About the Program
Bachelor of Arts (BA)
The ocean plays a central role in physical, biological, chemical, and geological processes on Earth. The field of marine science thus requires an understanding of the interactions between the biosphere, hydrosphere, lithosphere, and atmosphere. Some examples of the current research directions of societal concern in the marine sciences include: the role of the ocean in climate change, the ocean's role in climate phenomena such as El Niño and La Niña (and their effect on modern marine ecosystems), the history of El Niño and other climatic/oceanographic events recorded in marine sediments and corals, coastal pollution and its effect on coastal marine ecosystems, and coastal erosion (natural and human-caused).
Declaring the Major
The department strongly encourages students to see the student services advisor as early as possible. Students are accepted into the major with a C average or better. There are a number of scholarships and research opportunities as well as other benefits available to declared majors.
Honors Program
Students in the honors program must fulfill the following additional requirements: 1) maintain a grade point average (GPA) of at least 3.3 in all courses in the major and an overall GPA of at least 3.3 in the University; and 2) carry out an individual research or study project, involving at least three units of EPS H195. The project is chosen in consultation with a departmental advisor, and a written report is judged by the student's research supervisor and a departmental adviser.
Minor Program
For information regarding the requirements, please see the Minor Requirements tab. Program planning and confirmation should be done with the undergraduate major advisor and the Marine Science faculty adviser.
Other Majors and Minors Offered by the Department of Earth and Planetary Science
Atmospheric Science (Major and Minor)
Environmental Earth Science (Major and Minor)
Geology (Major and Minor)
Geophysics (Major and Minor)
Planetary Science (Major and Minor)
Major Requirements
In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.
General Guidelines
- All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.
-
No more than two upper division courses may be used to simultaneously fulfill requirements for a student's double major and no more one course may be used to fulfill minor program requirements with the exception of minors offered outside of the College of Letters & Science.
- A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.
- For more information on AP/IB Exam Scores & A-Level Course Equivalencies for EPS Majors, please see here.
For information regarding residence requirements and unit requirements, please see the College Requirements tab.
Lower Division Requirements
Code | Title | Units |
---|---|---|
EPS 50 & EPS 82 | The Planet Earth and Oceans | 7 |
or EPS N82 | Introduction to Oceans | |
CHEM 1A & 1AL | General Chemistry and General Chemistry Laboratory | 5 |
or CHEM 4A | General Chemistry and Quantitative Analysis | |
BIOLOGY 1B | General Biology Lecture and Laboratory | 4 |
Choose one of the following math sequences: | ||
Calculus and Calculus | ||
Methods of Mathematics: Calculus, Statistics, and Combinatorics and Methods of Mathematics: Calculus, Statistics, and Combinatorics | ||
Analytic Geometry and Calculus and Analytic Geometry and Calculus | ||
Choose one of the following physics sequences: | ||
Introductory Mechanics and Relativity and Introductory Electromagnetism, Waves, and Optics and Introduction to Experimental Physics I | ||
Physics for Scientists and Engineers and Physics for Scientists and Engineers | ||
Introductory Physics and Introductory Physics |
Upper Division Requirements
Code | Title | Units |
---|---|---|
EPS 102 | History and Evolution of Planet Earth | 4 |
EPS 150 | Case Studies in Earth Systems (Can only be taken senior year) | 2 |
Electives
Select a total of 24 units. At least 12 out of the 24 units must be EPS courses.
All elective courses used to fulfill the major requirements must be approved by the faculty adviser. This list is intended as a guide; the suggested courses are not limited to only courses included in this list.
Code | Title | Units |
---|---|---|
EPS C100 | Communicating Ocean Science | 4 |
EPS 100A | Minerals: Their Constitution and Origin | 4 |
EPS 100B | Genesis and Interpretation of Rocks | 4 |
EPS 103 | Introduction to Aquatic and Marine Geochemistry | 4 |
EPS 109 | Computer Simulations with Jupyter Notebooks | 4 |
EPS 113 | Biological Oceanography and Biogeochemistry | 4 |
EPS 117 | Geomorphology | 4 |
EPS 124 | Isotopic Geochemistry | 4 |
EPS 125 | Stable Isotope Geochemistry | 4 |
EPS C129 | Biometeorology | 3 |
EPS 131 | Geochemistry | 4 |
EPS C183 | Carbon Cycle Dynamics | 3 |
INTEGBI 103LF | Invertebrate Zoology with Laboratory | 5 |
INTEGBI 104LF | Natural History of the Vertebrates with Laboratory | 5 |
INTEGBI 108 | Marine Biology | 4 |
INTEGBI 113L | Paleobiological Perspectives on Ecology and Evolution | 4 |
INTEGBI 118 | Organismal Microbiomes and Host-Pathogen Interactions | 4 |
INTEGBI 120 | Introduction to Quantitative Methods In Biology | 4 |
INTEGBI 152 | Environmental Toxicology | 4 |
INTEGBI C153 | Ecology | 3 |
INTEGBI 158LF | Biology and Geomorphology of Tropical Islands | 13 |
INTEGBI 159 | The Living Planet: Impact of the Biosphere on the Earth System | 3 |
INTEGBI 160 | Course Not Available | 4 |
INTEGBI C171 | Freshwater Ecology | 3 |
INTEGBI C176L | Fish Ecology | 3 |
INTEGBI 177LF | Ichthyology: An Introduction to the Scientific Process Through Research on Fishes | 4 |
INTEGBI 230 | Marine Ecosystems and Global Change (Advanced undergraduates welcome) | 1 |
PB HLTH 142 | Introduction to Probability and Statistics in Biology and Public Health | 4 |
PLANTBI C140 | Course Not Available | |
PLANTBI C192 | Molecular Approaches to Environmental Problem Solving | 2 |
PLANTBI 120 | Biology of Algae | 2 |
PLANTBI 120L | Laboratory for Biology of Algae | 2 |
ESPM 108B | Environmental Change Genetics | 3 |
ESPM 152 | Global Change Biology | 3 |
ESPM 102D | Climate and Energy Policy | 4 |
GEOG 129 | Ocean Worlds | 3 |
GEOG 142 | Climate Dynamics | 4 |
GEOG 143 | Global Change Biogeochemistry | 3 |
DATA C131A | Statistical Methods for Data Science | 4 |
STAT C100 | Principles & Techniques of Data Science | 4 |
STAT 133 | Concepts in Computing with Data | 3 |
STAT 153 | Introduction to Time Series | 4 |
MEC ENG 160 | Ocean Engineering Seminar | 2 |
MEC ENG 168 | Mechanics of Offshore Systems | 3 |
MEC ENG 266 | Geophysical and Astrophysical Fluid Dynamics (Instructor must approve undergraduate enrollment) | 3 |
CIV ENG 100 | Elementary Fluid Mechanics | 4 |
CIV ENG 111 | Environmental Engineering | 3 |
CIV ENG 115 | Water Chemistry | 3 |
CIV ENG 200A | Environmental Fluid Mechanics I | 3 |
CIV ENG 210 | Control of Water-Related Pathogens | 3 |
CIV ENG 211A | Environmental Physical-Chemical Processes | 3 |
Minor Requirements
Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements and are noted officially on the transcript in the memoranda section, but they are not noted on diplomas.
General Guidelines
- All minors must be declared no later than one semester before a student's Expected Graduation Term (EGT). If the semester before EGT is fall or spring, the deadline is the last day of RRR week. If the semester before EGT is summer, the deadline is the final Friday of Summer Sessions. To declare a minor, contact the department advisor for information on requirements, and the declaration process.
- All courses taken to fulfill the minor requirements below must be taken for graded credit.
- A minimum of three of the upper division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
- A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
- Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
- No more than one upper division course may be used to simultaneously fulfill requirements for a student's major and minor programs.
- All minor requirements must be completed prior to the last day of finals during the semester in which the student plans to graduate. If students cannot finish all courses required for the minor by that time, they should see a College of Letters & Science adviser.
- All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)
Lower Division Requirements
Code | Title | Units |
---|---|---|
Lower Division | ||
EPS 82 | Oceans | 3 |
or EPS N82 | Introduction to Oceans |
Upper Division
Select a minimum of five of the following (two must be EPS courses):
Code | Title | Units |
---|---|---|
EPS C100 | Communicating Ocean Science | 4 |
EPS 100A | Minerals: Their Constitution and Origin | 4 |
EPS 100B | Genesis and Interpretation of Rocks | 4 |
EPS 102 | History and Evolution of Planet Earth | 4 |
EPS 103 | Introduction to Aquatic and Marine Geochemistry | 4 |
EPS 109 | Computer Simulations with Jupyter Notebooks | 4 |
EPS 113 | Biological Oceanography and Biogeochemistry | 4 |
EPS 117 | Geomorphology | 4 |
EPS 124 | Isotopic Geochemistry | 4 |
EPS 125 | Stable Isotope Geochemistry | 4 |
EPS C129 | Biometeorology | 3 |
EPS 131 | Geochemistry | 4 |
EPS C183 | Carbon Cycle Dynamics | 3 |
INTEGBI 103LF | Invertebrate Zoology with Laboratory | 5 |
INTEGBI 104LF | Natural History of the Vertebrates with Laboratory | 5 |
INTEGBI 108 | Marine Biology | 4 |
INTEGBI 113L | Paleobiological Perspectives on Ecology and Evolution | 4 |
INTEGBI 118 | Organismal Microbiomes and Host-Pathogen Interactions | 4 |
INTEGBI 120 | Introduction to Quantitative Methods In Biology | 4 |
INTEGBI 152 | Environmental Toxicology | 4 |
INTEGBI C153 | Ecology | 3 |
INTEGBI 158LF | Biology and Geomorphology of Tropical Islands | 13 |
INTEGBI 159 | The Living Planet: Impact of the Biosphere on the Earth System | 3 |
INTEGBI 160 | Course Not Available | 4 |
INTEGBI C171 | Freshwater Ecology | 3 |
INTEGBI C176L | Fish Ecology | 3 |
INTEGBI 177LF | Ichthyology: An Introduction to the Scientific Process Through Research on Fishes | 4 |
INTEGBI 230 | Marine Ecosystems and Global Change (Advanced undergraduates welcome) | 1 |
PB HLTH 142 | Introduction to Probability and Statistics in Biology and Public Health | 4 |
PLANTBI C140 | Course Not Available | |
PLANTBI C192 | Molecular Approaches to Environmental Problem Solving | 2 |
PLANTBI 120 | Biology of Algae | 2 |
PLANTBI 120L | Laboratory for Biology of Algae | 2 |
ESPM 108B | Environmental Change Genetics | 3 |
ESPM 152 | Global Change Biology | 3 |
ESPM 102D | Climate and Energy Policy | 4 |
GEOG 129 | Ocean Worlds | 3 |
GEOG 142 | Climate Dynamics | 4 |
GEOG 143 | Global Change Biogeochemistry | 3 |
DATA C131A | Statistical Methods for Data Science | 4 |
STAT C100 | Principles & Techniques of Data Science | 4 |
STAT 133 | Concepts in Computing with Data | 3 |
STAT 153 | Introduction to Time Series | 4 |
MEC ENG 160 | Ocean Engineering Seminar | 2 |
MEC ENG 168 | Mechanics of Offshore Systems | 3 |
MEC ENG 266 | Geophysical and Astrophysical Fluid Dynamics (Instructor must approve undergraduate enrollment) | 3 |
CIV ENG 100 | Elementary Fluid Mechanics | 4 |
CIV ENG 111 | Environmental Engineering | 3 |
CIV ENG 115 | Water Chemistry | 3 |
CIV ENG 200A | Environmental Fluid Mechanics I | 3 |
CIV ENG 210 | Control of Water-Related Pathogens | 3 |
CIV ENG 211A | Environmental Physical-Chemical Processes | 3 |
College Requirements
Undergraduate students must fulfill the following requirements in addition to those required by their major program.
For detailed lists of courses that fulfill college requirements, please review the College of Letters & Sciences page in this Guide. For College advising appointments, please visit the L&S Advising Pages.
University of California Requirements
Entry Level Writing
All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.
American History and American Institutions
The American History and Institutions requirements are based on the principle that a US resident graduated from an American university, should have an understanding of the history and governmental institutions of the United States.
Berkeley Campus Requirement
American Cultures
All undergraduate students at Cal need to take and pass this course in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.
College of Letters & Science Essential Skills Requirements
Quantitative Reasoning
The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.
Foreign Language
The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.
Reading and Composition
In order to provide a solid foundation in reading, writing, and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses in sequential order by the end of their fourth semester.
College of Letters & Science 7 Course Breadth Requirements
Breadth Requirements
The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.
Unit Requirements
-
120 total units
-
Of the 120 units, 36 must be upper division units
- Of the 36 upper division units, 6 must be taken in courses offered outside your major department
Residence Requirements
For units to be considered in "residence," you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.
Note: Courses taken through UC Extension do not count toward residence.
Senior Residence Requirement
After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.
You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.
Modified Senior Residence Requirement
Participants in the UC Education Abroad Program (EAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.
Upper Division Residence Requirement
You must complete in residence a minimum of 18 units of upper division courses (excluding UCEAP units), 12 of which must satisfy the requirements for your major.
Student Learning Goals
Mission
The goal of the Marine Science BA degree is to provide students with a broad and sound education that provides general and specialized knowledge and is intellectually challenging and stimulating. Upon completion of the degree students are ready to enter graduate school at top-ranking institutions (about half of them choose this path), find employment in the profession (geological and environmental engineering and consulting are major opportunities), continue in public education as teachers, or use their background as a sound basis for a new career such as in public policy, law, or medical sciences.
Learning Goals for the Major
Marine Science majors acquire knowledge through course work, laboratory training (expertise in experimental techniques), primary field research, library research, and computer applications with oral presentations and written reports required in many of our classes.
The undergraduate program provides strong technical training for those who wish to pursue professional careers in the earth, environmental and planetary sciences as well as training in analytical, creative and critical thinking, and communication for those who choose paths in new fields.
The Marine Science track is a good foundation for graduate study in the marine, geological or biological sciences or for technical positions in State and Federal agencies (such as NASA or NOAA) or private consulting firms.
Marine science is inherently interdisciplinary. Since the ocean plays a central role in physical, biological, chemical, and geological processes on Earth, an understanding of the interactions between the biosphere, hydrosphere, lithosphere, and atmosphere are crucial.
Advising
Undergraduate Student Services
Faculty Advisor
Professor Bethanie Edwards
bethanie_edwards@berkeley.edu
EPS Undergraduate Appointments
To make an appointment, please visit the EPS Student Services page.
Faculty and Instructors
* Indicates this faculty member is the recipient of the Distinguished Teaching Award.
Faculty
Richard Allen, Professor. Seismology earthquakes earthquake hazard mitigation earth structure tomography natural hazards.
Research Profile
Jillian Banfield, Professor. Nanoscience, Bioremediation, genomics, biogeochemistry, carbon cycling, geomicrobiology, MARS, minerology.
Research Profile
Jim Bishop, Professor. Ocean carbon cycle dynamics, remote sensing, aquatic chemistry, marine biogeochemistry, land - ocean biogeochemistry, chemical oceanography, ocean sensors and autonomous observing systems, Carbon Explorer, Carbon Flux Explorer .
Research Profile
Kristie A. Boering, Professor. Physical chemistry, climate change, atmospheric chemistry, environmental chemistry, ozone, earth and planetary science, isotopic compositions of atmospheric trace gases, stratospheric ozone, carbon dioxide, nitrous oxide, molecular hydrogen, methane.
Research Profile
William Boos, Associate Professor. Atmospheric science, climate dynamics, monsoons, Earth's hydrological cycle.
Research Profile
Bruce Buffett, Professor. Dynamics and evolution of planetary interiors, including mantle convection, plate tectonics, and planetary dynamos.
Research Profile
Roland Burgmann, Professor. Geophysics, geology, earth and planetary science, geomechanics, tectonics, structural geology, active tectonics, fault zone processes, crustal deformation, space geodesy.
Research Profile
* Eugene Chiang, Professor. Planetary science, theoretical astrophysics, dynamics, planet formation, circumstellar disks.
Research Profile
Ronald C. Cohen, Professor. Physical chemistry, water, climate, air pollution, atmospheric chemistry, environmental chemistry, analytical chemistry, ozone, nitrogen oxides, CO2, clouds.
Research Profile
William D. Collins, Professor in Residence. Climate change, uncertainty of extremes, climate modeling, coupled models of the climate system, global climate models, solar and terrestrial radiation.
Research Profile
Kurt Cuffey, Professor. Continuum mechanics, climate, geomorphology, glaciers, glaciology, climate history, stable isotopes, geographical thought.
Research Profile
William E. Dietrich, Professor. Morphology, earth and planetary sciences, geomorphology, evolution of landscapes, geomorphic transport laws, landscape evolution modeling, high resolution laser altimetry, cosmogenic nuclide analysis.
Research Profile
Douglas S. Dreger, Professor. Wave propagation, geophysics, earth and planetary sciences, waveform data, geophysical inverse problems, seismic radiation, regional distance methodology, crustal structure affects on ground motions in the greater San Francisco Bay area.
Research Profile
Bethanie Edwards, Assistant Professor. Oceanography, chemical oceanography, environmental microbiology, molecular tools for microbial ecology, mass spectrometry, lipidomics, lipid metabolism, marine biogeochemistry, microbial carbon cycling, ocean carbon cycle dynamics.
Research Profile
Inez Fung, Professor. Global change, environmental policy, ecosystem scienes.
Research Profile
Benjamin Gilbert, Associate Adjunct Professor. Nanogeoscience – geochemical interactions of natural nanoscale minerals; the development and application of synchrotron x-ray experiments and analysis methods for the study of mineral nanoparticles.
Raymond Jeanloz, Professor. Planetary geophysics, high-pressure physics, national and international security, science-based policy.
Research Profile
Harriet Lau, Assistant Professor. Large-scale properties of Earth; Global-scale geodynamic processes across different timescales; Frequency-dependent Rheology.
Research Profile
Kanani Lee, Associate Adjunct Professor. Physics and chemistry of Earth and planetary materials at ultra-high pressure and temperature conditions; formation and evolution of Earth and (exo)planets in general.
* Michael Manga, Professor. Hydrogeology, fluid mechanics, geomorphology, earth and planetary science, geological processes involving fluids, including problems in physical volcanology, geodynamics, dynamics of suspensions, flow and transport in porous materials, percolation theory.
Research Profile
Burkhard Militzer, Professor. Saturn, structure and evolution of Jupiter, and extrasolar giant planets.
Research Profile
Steven R. Pride, Adjunct Professor. Crusted seismology, poroelasticity, electrical properties of rocks, physics of brittle fracture.
James W. Rector, Professor. Geophysics, Oil and Gas, Unconventional Shale Gas Reservoirs, Horizontal Drilling, Fracking, Near Surface Seismology, Tunnel Detection, Treasure Hunting, and Geophysical Archaeology, Borehole Seismology.
Research Profile
Paul Renne, Professor in Residence. Geochemistry, geochronology, paleomagnetism.
Research Profile
Barbara A. Romanowicz, Professor. Earth and planetary science, deep earth structure and dynamics, earthquake processes and scaling laws, real time estimation of earthquake parameters, development of modern broadband seismic and geophysical observatories, planetary seismology.
Research Profile
David Romps, Professor. Climate, atmosphere, atmospheric science, weather, clouds, fluid dynamics.
Research Profile
Stephen Self, Adjunct Professor. Physical volcanology, field studies of products of large eruptions, environmental impact of volcanism.
David Shuster, Professor. Noble gas geochemistry, thermochronometry, cosmogenic nuclide, alpine glacial erosion, chemical weathering, lunar impacts, magnetism, Martian meteorites.
Research Profile
Daniel Stolper, Assistant Professor. Biogeochemistry, Earth History, Geobiology, Global Climate Studies, Organic Geochemistry, Stable Isotope Geochemistry.
Research Profile
Nicholas Swanson-Hysell, Associate Professor. Geology, stratigraphy, paleomagnetism, paleogeography.
Research Profile
Lecturers
Horst Rademacher, Lecturer.
Emeritus Faculty
Walter Alvarez, Professor Emeritus, Professor of the Graduate School. Stratigraphy and Earth history, tectonics, stratigraphy of pelagic limestones.
George H. Brimhall, Professor Emeritus. Earth and planetary sciences, geology, ore-forming processes, mineral exploration science, non-renewable resource issues, photo-voltaic semi-conductor resources.
Research Profile
Mark S. T. Bukowinski, Professor Emeritus. Geophysics, earth and planetary sciences, planetary interiors, theoretical mineral physics, deep earth minerals, geochemical processes, thermal and chemical evolution.
Research Profile
Imke De Pater, Professor Emeritus. Radio, planetary science, infrared, observations.
Research Profile
Don DePaolo, Professor Emeritus, Professor of the Graduate School. Application of mass spectrometry, radiogenic isotope geochemistry, and principles of physics and chemistry to fundamental problems in geology.
Research Profile
Lynn Ingram, Professor Emeritus. Geophysics, geology, earth and planetary science, geography, stratigraphy with strontium isotopes, paleontological, paleoclimate, California climate change, paleosalinity, shellmounds, geochemical data, paleoclimatic and paleo-environmental reconstruction in aquatic environments using sedimentological.
Research Profile
Lane Johnson, Professor Emeritus. Earth and planetary science, geophysical methods of studying structure and processes within the earth, seismic sources, monitoring of nuclear test ban treaties, theoretical and computational methods of treating wave propagation in realistic earth models.
Research Profile
James Kirchner, Professor Emeritus. Evolutionary ecology, biogeochemistry, earth and planetary sciences, geomorphology, watershed hydrology and geochemistry.
Research Profile
Mark A. Richards, Professor Emeritus. Crustal deformation, earth and planetary sciences, mantle convection, large-scale mantle structure, rotational dynamics and gravity fields of terrestrial planets, history and dynamics of global plate motions, igneous processes in the mantle and deep crust.
Research Profile
Chi-Yuen Wang, Professor Emeritus, Professor of the Graduate School. Earth and planetary science.
Research Profile
Hans-Rudolf Wenk, Professor Emeritus, Professor of the Graduate School. Crystallography, earth and planetary science, structural geology and rock deformation, seismic anisotropy, investigating development of preferred orientation under expreme conditions using neutron diffraction, synchrotron x-rays, and electron microscopy.
Research Profile
Contact Information
Department of Earth and Planetary Science
307 McCone Hall
Phone: 510-642-3993
Fax: 510-643-9980