Environmental Engineering Science

University of California, Berkeley

This is an archived copy of the 2018-19 guide. To access the most recent version of the guide, please visit http://guide.berkeley.edu.

About the Program

Bachelor of Science (BS)

The environmental engineering science (EES) major is an interdisciplinary program pairing engineering fundamentals with courses in the environmental and natural sciences. The EES curriculum provides a broader foundation in the sciences, allowing students to take classes in a variety of departments both inside and outside of the College of Engineering. At the same time, it allows students to focus their studies on environmental issues more than is possible in other engineering programs. EES provides a solid interdisciplinary foundation that is necessary for creating real-world solutions to global environmental challenges, such as providing a robust supply of safe drinking water, and meeting societal demands for energy without causing air pollution or interfering with the Earth’s climate systems.

Admission to the Major

Prospective undergraduates of the College of Engineering must apply for admission to one specific major/degree program. For further information, please see the College of Engineering's website.

Admission to engineering via a Change of College application for current UC Berkeley students is very competitive as there are few spaces open in engineering each year to students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, please see the College's website.

Minor Program

A minor in environmental engineering is available through the Department of Civil and Environmental Engineering.

Other Majors offered by the Engineering Science Program

Energy Engineering (Major and Minor)
Engineering Mathematics and Statistics (Major only)
Engineering Physics (Major only)

Visit Program Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Major Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
4
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
CIV ENG 11Engineered Systems and Sustainability 33
CIV ENG C30/MEC ENG C85Introduction to Solid Mechanics3
Basic science electives, select three from the following: 212-15
General Biology Lecture
and General Biology Laboratory
General Biology Lecture and Laboratory [4]
General Chemistry [4]
Chemical Structure and Reactivity
and Organic Chemistry Laboratory
Chemical Structure and Reactivity
and Organic Chemistry Laboratory
General Chemistry and Quantitative Analysis [4] 1
The Planet Earth [4]
Physics for Scientists and Engineers [4]
1

CHEM 4A and CHEM 4B are intended for students majoring in chemistry or a closely-related field.

2

Approved scores on Biology AP, IB, or A-Level exams can satisfy two of the three basic science electives.

3

 Junior transfer admits are exempt from completing CIV ENG 11.

Upper Division Major Requirements

CIV ENG 100Elementary Fluid Mechanics3-4
or MEC ENG 106 Fluid Mechanics
or CHM ENG 150A Transport Processes
CIV ENG 103Introduction to Hydrology3
or CIV ENG 115 Water Chemistry
MEC ENG 40Thermodynamics3-4
or ENGIN 40 Engineering Thermodynamics
or CHM ENG 141 Chemical Engineering Thermodynamics
CIV ENG 111Environmental Engineering3
Math/computing elective, select one course from the following:3-4
Methods of Engineering Analysis [3]
Advanced Programming with MATLAB [3]
Introduction to Analysis [4]
Linear Algebra [4]
Introduction to Partial Differential Equations [4]
Numerical Analysis [4]
Mathematical Methods for Optimization [4]
Introduction to Complex Analysis [4]
Concepts in Computing with Data [3]
Concepts of Probability [3]
Advanced science sequence, select 8-10 units from one of the following groups:8-10
Organic Chemistry
and Organic Chemistry
Physical Chemistry
and Physical Chemistry
and Physical Chemistry Laboratory
Field Geology and Digital Mapping
and Geodynamics
and Structural Geology and Tectonics
and Geomorphology
and Isotopic Geochemistry
and Geological Oceanography
Air Pollution
and Atmospheric Physics and Dynamics
and Atmospheric Chemistry and Physics Laboratory
and Climate Dynamics
Course Not Available
and Principles of Conservation Biology
and Ecosystem Ecology
and Microbial Ecology
and Science of Soils
and Chemistry of Soils
and Soil Microbiology and Biogeochemistry
Survey of the Principles of Biochemistry and Molecular Biology
and General Microbiology
and General Microbiology Laboratory
Cluster courses: select 12 units from one of the clusters listed below. 112
1

The 12 units of cluster courses are in addition to the engineering and science courses used to fulfill other requirements for the major.

Approved Cluster Courses

Air Pollution and Climate Change
ARCH 140Energy and Environment4
BIO ENG C181The Berkeley Lectures on Energy: Energy from Biomass3
CIV ENG C106Air Pollution3
CIV ENG 107Climate Change Mitigation3
EL ENG 134Fundamentals of Photovoltaic Devices4
EL ENG 137AIntroduction to Electric Power Systems4
EL ENG 137BIntroduction to Electric Power Systems4
MAT SCI 136Materials in Energy Technologies4
MEC ENG 109Heat Transfer3
MEC ENG 140Combustion Processes3
MEC ENG 146Energy Conversion Principles3
NUC ENG 161Nuclear Power Engineering4
Biotechnology
BIO ENG C181The Berkeley Lectures on Energy: Energy from Biomass3
CHM ENG 140Introduction to Chemical Process Analysis4
CHM ENG 142Chemical Kinetics and Reaction Engineering4
CHM ENG 170ABiochemical Engineering3
CHM ENG 170BBiochemical Engineering3
CHM ENG C170LBiochemical Engineering Laboratory3
CIV ENG 112Environmental Engineering Design3
CIV ENG 114Environmental Microbiology3
MCELLBI C112
C112L
General Microbiology
and General Microbiology Laboratory
6
MCELLBI C116Microbial Diversity3
PLANTBI 120Biology of Algae2
PLANTBI 120LLaboratory for Biology of Algae2
PLANTBI 122Bioenergy2
PLANTBI 180Environmental Plant Biology2
Ecosystems and Ecological Engineering
CIV ENG 114Environmental Microbiology3
ESPM C103Principles of Conservation Biology4
ESPM C104Modeling and Management of Biological Resources4
INTEGBI C149Molecular Ecology4
INTEGBI 151Plant Physiological Ecology4
INTEGBI 151LPlant Physiological Ecology Laboratory2
INTEGBI 152Environmental Toxicology4
INTEGBI 153Ecology3
INTEGBI 154Plant Ecology3
Environmental Fluid Mechanics
CIV ENG 101Fluid Mechanics of Rivers, Streams, and Wetlands3
CIV ENG 103Introduction to Hydrology3
CIV ENG 105Water and Wind - Design for a Variable Environment3
CIV ENG 173Groundwater and Seepage3
EPS 117Geomorphology4
EPS C129Biometeorology3
Geoengineering
CIV ENG 171Rock Mechanics3
CIV ENG 173Groundwater and Seepage3
CIV ENG 175Geotechnical and Geoenvironmental Engineering3
CIV ENG 176Environmental Geotechnics3
CIV ENG C178Applied Geophysics3
CIV ENG 281Engineering Geology3
EPS 117Geomorphology4
Water Quality
CIV ENG 112Environmental Engineering Design3
CIV ENG 114Environmental Microbiology3
CIV ENG 115Water Chemistry3
CIV ENG C116Chemistry of Soils3
CIV ENG 173Groundwater and Seepage3
ESPM 120Science of Soils3
INTEGBI 152Environmental Toxicology4

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the college's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required) and must be completed by no later than the end of the sophomore year (fourth semester of enrollment). The first half of R&C, the “A” course, must be completed by the end of the freshman year; the second half of R&C, the “B" course, must be completed by no later than the end of the sophomore year. Use the Class Schedule to view R&C courses offered in a given semester. View the list of exams that can be applied toward the first half of the R&C requirement. Note: Only the first half of R&C can be fulfilled with an AP or IB exam score. Test scores do not fulfill the second half of the R&C requirement for College of Engineering students.
  4. The four additional courses must be chosen within College of Engineering guidelines from the H/SS lists (see below). These courses may be taken on a Pass/Not Passed basis (P/NP).
  5. Two of the six courses must be upper division (courses numbered 100-196).
  6. One of the six courses must satisfy the campus American Cultures requirement. For detailed lists of courses that fulfill American Cultures requirements, visit the American Cultures site. 
  7. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  8. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, and MEC ENG 191K may be used to complete H/SS requirements.
  10. Foreign language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
  12. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:
  • Arts and Literature
  • Historical Studies
  • International Studies
  • Philosophy and Values
  • Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule, select the term of interest, and use the Breadth Requirements filter.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each) required of the major program of study in which the student is officially declared. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester).
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

American Cultures (AC) is the one requirement that all undergraduate students at UC Berkeley need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity, and culture in the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Freshman
FallUnitsSpringUnits
CHEM 4A or 1A and 1AL14MATH 1B4
MATH 1A4PHYSICS 7A4
Reading & Composition course from List A4CIV ENG 1163
Humanities/Social Sciences course3-4ENGIN 74
 15-16 15
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4CIV ENG C30 or MEC ENG C853
First Basic Science Elective24-5Second and Third Basic Science Electives28-10
Reading & Composition course from List B4 
 16-17 15-17
Junior
FallUnitsSpringUnits
CIV ENG 100, MEC ENG 106, or CHM ENG 150A3-4MEC ENG 40, ENGIN 40, or CHM ENG 1413-4
CIV ENG 103 or 1153Math/Computing Elective33-4
CIV ENG 1113Cluster courses46
Humanities/Social Sciences course3-4Humanities/Social Sciences course3-4
Free Electives3 
 15-17 15-18
Senior
FallUnitsSpringUnits
Cluster course43Cluster course43
Advanced Science Sequence course54-5Advanced Science Sequence course54-5
Free Electives8Humanities/Social Sciences course3-4
 Free Electives4
 15-16 14-16
Total Units: 120-132
1

CHEM 4A is intended for students majoring in chemistry or a closely-related field.

2

Select three basic science electives from: BIOLOGY 1A plus BIOLOGY 1AL, BIOLOGY 1BCHEM 1BCHEM 3A plus CHEM 3ALCHEM 3B plus CHEM 3BLCHEM 4BEPS 50PHYSICS 7C. Note: approved scores on Biology AP, IB or A-Level Exams can satisfy two of the three basic science electives.

3

Select one from the following: ENGIN 117ENGIN 177MATH 104MATH 110MATH 126MATH 128AMATH 170MATH 185STAT 133, or STAT 134.

4

Cluster courses: 12 units required. See Major Requirements tab for list of approved cluster courses.

5

Advanced science sequence: 8-10 units required. See Major Requirements tab for list of approved advanced science sequence courses.

6

Junior transfer admits are exempt from completing CIV ENG 11.

Courses

Environmental Engineering Science

Faculty and Instructors

+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.

Faculty

Ilan Adler, Professor. Financial engineering, optimization theory, combinatorial probability models.
Research Profile

Ana Claudia Arias, Associate Professor. Physical Electronics (PHY), Flexible and Printed Electronics, Energy (ENE).

David Attwood, Professor-in-Residence. Short wavelength electromagnetics, Soft X-ray microscopy, Coherence, EUV lithography.

James Casey, Professor. Continuum mechanics, finite elasticity, continuum thermodynamics, plasticity, theories of elastic-plastic materials, history of mechanics, dynamics.
Research Profile

Alexandra von Meier, Adjunct Professor. Energy, Electric Grids, Power Distribution .
Research Profile

Scott Moura, Assistant Professor. Optimal control, PDE control, estimation, adaptive control, dynamic system modeling, energy management, battery management systems, vehicle-to-grid, smart grid.
Research Profile

Kara L. Nelson, Professor. Water and wastewater treatment, water reuse, detection and inactivation of pathogens in water and sludge, appropriate technologies.
Research Profile

Junqiao Wu, Associate Professor. Semiconductors, nanotechnology, energy materials.
Research Profile

Alex Zettl, Professor. Physics, condensed matter physics, fullerenes, condensed matter experiments, characterize novel materials with unusual electronic and magnetic ground states, low-dimensional and nanoscale structures, superconductors, giant magnetoresistance materials, nanotubes, graphene, boron nitride nanostructures, neural probes, NEMS.
Research Profile

+ Tarek Zohdi, Professor. Finite element methods, computational methods for advanced manufacturing, micro-structural/macro-property inverse problems involving optimization and design of new materials, modeling and simulation of high-strength fabric, modeling and simulation of particulate/granular flows, modeling and simulation of multiphase/composite electromagnetic media, modeling and simulation of the dynamics of swarms.
Research Profile

Contact Information

Engineering Science Program

Visit Program Website

Faculty Adviser

Kara Nelson, PhD

663 Davis Hall

karanelson@berkeley.edu

Undergraduate Staff Adviser

Felicia Bautista

750 Davis Hall

http://engineeringscience.berkeley.edu/

fbautista3@berkeley.edu

Engineering Student Services

Olivia Chan

Phone: 510-642-7594

http://engineering.berkeley.edu/ESS

oychan@berkeley.edu

Back to Top