About the Program
Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.
The Bioengineering/Materials Science and Engineering Joint Major is for students who have a keen interest in the field of biomaterials. Students will study the design and synthesis of novel materials that will define new paradigms in biomaterials from the molecular through macroscopic levels, and will also receive a broad–based learning experience that will include exposure to fundamental courses in engineering and life sciences. This joint major aims to allow the student to understand the interface between the two major fields. Students taking this double major will successfully compete for jobs in the field of biomaterials in academe, industry, and government.
Admission to the Joint Major
Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.
Major Requirements
In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.
General Guidelines
-
All courses taken in satisfaction of major requirements must be taken for a letter grade.
-
No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
-
A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
-
A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.
For information regarding residence requirements and unit requirements, please see the College Requirements tab.
For a detailed plan of study by year and semester, please see the Plan of Study tab.
Lower Division Requirements
Code | Title | Units |
---|---|---|
MATH 1A | Calculus | 4 |
MATH 1B | Calculus | 4 |
MATH 53 | Multivariable Calculus | 4 |
MATH 54 | Linear Algebra and Differential Equations | 4 |
CHEM 1A & 1AL | General Chemistry and General Chemistry Laboratory 1 | 4 |
or CHEM 4A | General Chemistry and Quantitative Analysis | |
CHEM 3A & 3AL | Chemical Structure and Reactivity and Organic Chemistry Laboratory 1 | 5 |
or CHEM 12A | Organic Chemistry | |
PHYSICS 7A | Physics for Scientists and Engineers | 4 |
PHYSICS 7B | Physics for Scientists and Engineers | 4 |
BIO ENG 10 | Introduction to Biomedicine for Engineers | 4 |
BIO ENG 11 | Engineering Molecules 1 | 3 |
BIO ENG 26 | Introduction to Bioengineering | 1 |
ENGIN 7 | Introduction to Computer Programming for Scientists and Engineers | 4 |
or COMPSCI 61A | The Structure and Interpretation of Computer Programs | |
MAT SCI 45 | Properties of Materials | 3 |
MAT SCI 45L | Properties of Materials Laboratory | 1 |
1 | CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field. |
Upper Division Requirements
Please note that technical courses listed below fulfill only one requirement.
Code | Title | Units |
---|---|---|
BIO ENG 102 | Biomechanics: Analysis and Design | 4 |
BIO ENG 103 | Engineering Molecules 2 | 4 |
BIO ENG 104 | Biological Transport Phenomena | 4 |
BIO ENG 116 | Cell and Tissue Engineering | 4 |
or BIO ENG C117 | Structural Aspects of Biomaterials | |
or BIO ENG 111 | Functional Biomaterials Development and Characterization | |
BIO ENG C118 | Biological Performance of Materials | 4 |
MAT SCI 102 | Bonding, Crystallography, and Crystal Defects | 3 |
MAT SCI 103 | Phase Transformations and Kinetics | 3 |
MAT SCI 104 | Materials Characterization | 4 |
MAT SCI 130 | Experimental Materials Science and Design | 3 |
or BIO ENG 115 | Cell Biology for Engineers | |
MAT SCI 151 | Polymeric Materials | 3 |
BIO ENG 110 | Biomedical Physiology for Engineers | 4 |
or BIO ENG 114 | Cell Engineering | |
ENGIN 40 | Engineering Thermodynamics | 3-4 |
or CHEM 120B | Physical Chemistry | |
MAT SCI Electives: Select two courses from the following: | 6-7 | |
Properties of Electronic Materials | ||
Corrosion (Chemical Properties) | ||
Mechanical Behavior of Engineering Materials | ||
Experimental Materials Science and Design | ||
BIO ENG Elective: Select one of the following: 1 | 3-4 | |
Biomedical Physiology for Engineers | ||
Functional Biomaterials Development and Characterization | ||
Cell Engineering | ||
Cell Biology for Engineers | ||
Structural Aspects of Biomaterials | ||
BioMEMS and Medical Devices | ||
Basic Principles of Drug Delivery | ||
Introduction of Bionanoscience and Bionanotechnology | ||
Bioengineering Design Project or Research: Select one of the following: | 3-4 | |
BioMems and BioNanotechnology Laboratory | ||
Synthetic Biology Laboratory | ||
Practical Light Microscopy | ||
Senior Design Projects | ||
Honors Undergraduate Research | ||
Undergraduate Design Research | ||
Ethics requirement, select one of the following: 2 | 3-4 | |
Ethics in Science and Engineering | ||
Ethics, Engineering, and Society | ||
Engineering, The Environment, and Society | ||
Environmental Philosophy and Ethics | ||
Health, Medicine, Society and Environment | ||
Engineering, The Environment, and Society | ||
Effective Personal Ethics for the Twenty-First Century | ||
Ethical Theories | ||
Moral Psychology |
1 | Cannot be a course you have taken to fulfill another requirement. |
2 | The Ethics requirement will also fulfill one Humanities/Social Sciences requirement. See College Requirements tab. |
College Requirements
Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:
- Completion of the requirements of one engineering major program study.
- A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
- The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
- All technical courses (math, science and engineering), required of the major or not, must be taken on a letter graded basis (unless they are only offered P/NP).
- Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
- Adhere to all college policies and procedures as they complete degree requirements.
- Complete the lower division program before enrolling in upper division engineering courses.
Humanities and Social Science (H/SS) Requirement
To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:
- Complete a minimum of six courses from the approved Humanities/Social Sciences (H/SS) lists.
- Courses must be a minimum of 3 semester units (or 4 quarter units).
- Two of the six courses must fulfill the college's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required) and must be completed by no later than the end of the sophomore year (fourth semester of enrollment). The first half of R&C, the “A” course, must be completed by the end of the freshman year; the second half of R&C, the “B" course, must be completed by no later than the end of the sophomore year. View a detailed list of courses that fulfill Reading and Composition requirements, or use the College of Letters and Sciences search engine to view R&C courses offered in a given semester.
- The four additional courses must be chosen within College of Engineering guidelines from the H/SS lists (see below). These courses may be taken on a Pass/Not Passed basis (P/NP).
- Two of the six courses must be upper division (courses numbered 100-196).
- One of the six courses must satisfy the campus American Cultures requirement. For detailed lists of courses that fulfill American Cultures requirements, visit the American Cultures site.
- A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
- Courses may fulfill multiple categories. For example, if you complete CY PLAN 118AC that would satisfy the American Cultures requirement and one upper division H/SS requirement.
- No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, MEC ENG 191K and MEC ENG 191AC may be used to complete H/SS requirements.
- Foreign language courses may be used to complete H/SS requirements. View the list of language options.
- Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement
- The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. No courses on the L&S Biological Sciences or Physical Sciences breadth lists may be used to complete H/SS requirements. Within the guidelines above, choose courses from any of the lists below.
- Arts and Literature
- Foreign Language
- Historical Studies
- International Studies
- Philosophy and Values
- Social and Behavioral Studies
Class Schedule Requirements
- Minimum units per semester: 12.0.
- Maximum units per semester: 20.5.
- Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each) required of the major program of study in which the student is officially declared. (Note: for most majors, normal progress will require enrolling in 3-4 technical courses each semester).
- All technical courses (math, science, engineering), required of the major or not, must be taken on a letter-graded basis (unless only offered as P/NP).
- A student's proposed schedule must be approved by a faculty adviser (or on approval from the dean or a designated staff adviser) each semester prior to enrolling in courses.
Minimum Academic (Grade) Requirements
- A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. A student will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester. A student will be subject to dismissal from the University if their upper division technical grade point average falls below 2.00.
- A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering.
Unit Requirements
To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:
- Completion of the requirements of one engineering major program of study.
- A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
- A maximum of 4 units of physical education from any school attended will count towards the 120 units.
- Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.
Normal Progress
Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)
UC and Campus Requirements
University of California Requirements
All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.
American History and American Institutions
The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.
Campus Requirement
American Cultures (AC) is the one requirement that all undergraduate students at UC Berkeley need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture in the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.
Plan of Study
For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.
Freshman | |||
---|---|---|---|
Fall | Units | Spring | Units |
CHEM 1A & CHEM 1AL, or CHEM 4A1 | 4 | CHEM 3A & CHEM 3AL, or CHEM 12A1 | 5 |
MATH 1A | 4 | MATH 1B | 4 |
BIO ENG 10 | 4 | PHYSICS 7A | 4 |
BIO ENG 26 | 1 | Reading and Composition course from List B | 4 |
Reading and Composition course from List A | 4 | ||
17 | 17 | ||
Sophomore | |||
Fall | Units | Spring | Units |
MATH 53 | 4 | MATH 54 | 4 |
PHYSICS 7B | 4 | BIO ENG 11 | 3 |
ENGIN 7 or COMPSCI 61A | 4 | MAT SCI 45 | 3 |
Humanities/Social Sciences course | 3-4 | MAT SCI 45L | 1 |
Humanities/Social Sciences course | 3-4 | ||
15-16 | 14-15 | ||
Junior | |||
Fall | Units | Spring | Units |
BIO ENG 102 | 4 | BIO ENG 104 | 4 |
BIO ENG 103 | 4 | MAT SCI 103 | 3 |
MAT SCI 102 | 3 | ENGIN 40 or CHEM 120B | 3-4 |
BIO ENG 100 or Humanities/Social Sciences course with ethics content2 | 3-4 | BIO ENG 110 or 114 | 4 |
14-15 | 14-15 | ||
Senior | |||
Fall | Units | Spring | Units |
BIO ENG 115 or MAT SCI 130 | 3-4 | Bioengineering Design Project or Research4 | 3-4 |
BIO ENG C118 | 4 | MAT SCI Elective3 | 3-4 |
MAT SCI Elective3 | 3-4 | BIO ENG Elective5 | 3-4 |
Humanities/Social Sciences course | 3-4 | MAT SCI 151 | 3 |
Free Elective | 2 | Free Elective | 2 |
15-18 | 14-17 | ||
Total Units: 120-130 |
1 | CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field. |
2 | Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: BIO ENG 100, ENGIN 125, ENGIN 157AC, ESPM 161, ESPM 162, IAS 157AC, L & S 160B, PHILOS 104, PHILOS 107. |
3 | Students must choose two of the following MAT SCI Electives: MAT SCI 111, MAT SCI 112, MAT SCI 113, MAT SCI 130. |
4 | Bioengineering Design Project or Research: Choose one of the following: BIO ENG 121L, BIO ENG 140L, BIO ENG 168L, BIO ENG 192, BIO ENG H194, BIO ENG 196. |
5 | Students must choose one of the following BIO ENG Electives: BIO ENG 110, BIO ENG 111, BIO ENG 114, BIO ENG 115, BIO ENG C117, BIO ENG 121, BIO ENG 124, BIO ENG 150, , MAT SCI 112. The BIO ENG Elective cannot be a course you have taken to fulfill another requirement. |
Courses
Bioengineering/Materials Science and Engineering
BIO ENG 10 Introduction to Biomedicine for Engineers 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course is intended for lower division students interested in acquiring a foundation in biomedicine with topics ranging from evolutionary biology to human physiology. The emphasis is on the integration of engineering applications to biology and health. The goal is for undergraduate engineering students to gain sufficient biology and human physiology fundamentals so that they are better prepared to study specialized topics, e.g., biomechanics, imaging, computational biology, tissue engineering, biomonitoring, drug development, robotics, and other topics covered by upper division and graduate courses in UC Berkeley departments of Molecular and Cell Biology, Integrative Biology, Bioengineering, Electrical Engineering and Computer Science, Mechanical Engineering, and courses in the UC San Francisco Division of Bioengineering. The specific lecture topics and exercises will include the key aspects of genomics and proteomics as well as topics on plant and animal evolution, stem cell biomedicine, and tissue regeneration and replacement. Medical physiology topics include relevant engineering aspects of human brain, heart, musculoskeletal, and other systems.
Introduction to Biomedicine for Engineers: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Conboy, Kumar
BIO ENG 11 Engineering Molecules 1 3 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course focuses on providing students with a foundation in organic chemistry and biochemistry needed to understand contemporary problems in synthetic biology, biomaterials and computational biology.
Engineering Molecules 1: Read More [+]
Objectives Outcomes
Course Objectives: The goal of this course is to give students the background in organic chemistry and biochemistry needed understand problems in synthetic biology, biomaterials and molecular imaging. Emphasis is on basic mechanisms
Student Learning Outcomes: Students will learn aspects of organic and biochemistry required to begin the rational manipulation and/or design of biological systems and the molecules they are comprised of.
Rules & Requirements
Prerequisites: Chemistry 3A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 24 Freshmen Seminar 1 Unit
Terms offered: Spring 2018, Spring 2017, Fall 2016
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshmen Seminar: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
MAT SCI 24 Freshman Seminar 1 Unit
Terms offered: Spring 2018, Spring 2017, Spring 2016
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments, and topics vary from department to department and semester to semester. Enrollment limited to 20 freshmen.
Freshman Seminar: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
BIO ENG 25 Careers in Biotechnology 1 Unit
Terms offered: Spring 2018, Spring 2017, Spring 2016
This introductory seminar is designed to give freshmen and sophomores an opportunity to explore specialties related to engineering in the pharmaceutical/biotech field. A series of one-hour seminars will be presented by industry professionals, professors, and researchers. Topics may include biotechnology and pharmaceutical manufacturing; process and control engineering; drug inspection process; research and development; compliance and validation; construction process for a GMP facility; project management; and engineered solutions to environmental challenges. This course is of interest to students in all areas of engineering and biology, including industrial engineering and manufacturing, chemical engineering, and bioengineering.
Careers in Biotechnology: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
BIO ENG 26 Introduction to Bioengineering 1 Unit
Terms offered: Fall 2018, Fall 2017
This introductory seminar is designed to give freshmen and sophomores a glimpse of a broad selection of bioengineering research that is currently underway at Berkeley and UCSF. Students will become familiar with bioengineering applications in the various concentration areas and see how engineering principles can be applied to biological and medical problems.
Introduction to Bioengineering: Read More [+]
Objectives Outcomes
Course Objectives: This course is designed to expose students to current research and problems in bioengineering. As a freshman/sophomore class, its main purpose is to excite our students about the possibilities of bioengineering and to help them to choose an area of focus.
Student Learning Outcomes: This course demonstrates the rapid pace of new technology and the need for life-long learning (2). In addition, the course, because of its state-of-the-art research content, encourages our students to explore new horizons (3).
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructors: T. Johnson, H. Lam
MAT SCI 45 Properties of Materials 3 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Application of basic principles of physics and chemistry to the engineering properties of materials. Special emphasis devoted to relation between microstructure and the mechanical properties of metals, concrete, polymers, and ceramics, and the electrical properties of semiconducting materials. Sponsoring Department: Materials Science and Engineering
Properties of Materials: Read More [+]
Rules & Requirements
Prerequisites: Physics 7A (may be taken concurrently)
Credit Restrictions: Students will receive no credit for MSE 45 after taking E45
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Martin, Messersmith
MAT SCI 45L Properties of Materials Laboratory 1 Unit
Terms offered: Fall 2018, Spring 2018, Fall 2017
This course presents laboratory applications of the basic principles introduced in the lecture-based course MSE45 – Properties of Materials.
Properties of Materials Laboratory: Read More [+]
Rules & Requirements
Credit Restrictions: Students will receive no credit for MSE 45L after taking E45L
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructors: Martin, Messersmith
BIO ENG 84 Sophomore Seminar 1 or 2 Units
Terms offered: Spring 2018, Spring 2017, Spring 2013
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]
Rules & Requirements
Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week
Summer:
6 weeks - 2.5-5 hours of seminar per week
8 weeks - 1.5-3.5 hours of seminar and 2-4 hours of seminar per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
BIO ENG 98 Supervised Independent Group Studies 1 - 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Organized group study on various topics under the sponsorship of a member of the Bioengineering faculty.
Supervised Independent Group Studies: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricul a section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer: 8 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
BIO ENG 99 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2018, Fall 2017, Spring 2017
Supervised independent study for lower division students.
Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Prerequisites: Freshman or sophomore standing and consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
8 weeks - 1.5-7.5 hours of independent study per week
10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
BIO ENG 100 Ethics in Science and Engineering 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
The goal of this semester course is to present the issues of professional conduct in the practice of engineering, research, publication, public and private disclosures, and in managing professional and financial conflicts. The method is through historical didactic presentations, case studies, presentations of methods for problem solving in ethical matters, and classroom debates on contemporary ethical issues. The faculty will be drawn from national experts and faculty from religious studies, journalism, and law from the UC Berkeley campus.
Ethics in Science and Engineering: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Lam, Hayley
BIO ENG 101 Instrumentation in Biology and Medicine 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course teaches the fundamental principles underlying modern sensing and control instrumentation used in biology and medicine. The course takes an integrative analytic and hands-on approach to measurement theory and practice by presenting and analyzing example instruments currently used for biology and medical research, including EEG, ECG, pulsed oximeters, Complete Blood Count (CBC), etc.
Instrumentation in Biology and Medicine: Read More [+]
Objectives Outcomes
Course Objectives: Students should understand the architecture and design principles of modern biomedical sensor data-acquisition (sensor-DAQ) systems. They should understand how to choose the appropriate biomedical sensor, instrumentation amplifier, number of bits, sampling rate, anti-aliasing filter, and DAQ system. They will learn how to design a low-noise instrumentation amplifier circuit. They should understand the crucial importance of suppressing 60 Hz and other interferences to acquire high quality low-level biomedical signals. They should understand the design principles of building, debugging.
Student Learning Outcomes: Students will achieve knowledge and skills in biomedical signal acquisition. They will be assessed in their success with the Course Objectives through tests, homeworks, and laboratories. In particular, the tests will ensure that the students have absorbed the theoretical concepts. The laboratories will provide assessment of learning practical skills (e.g., building an ECG circuit).
Rules & Requirements
Prerequisites: El Eng 16A & 16B, Math 53, 54, Physics 7A-7B, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conolly
BIO ENG 102 Biomechanics: Analysis and Design 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course introduces, develops and applies the methods of continuum mechanics to biomechanical phenomena abundant in biology and medicine. It is intended for upper level undergraduate students who have been exposed to vectors, differential equations, and undergraduate course(s) in physics and certain aspects of modern biology.
Biomechanics: Analysis and Design: Read More [+]
Objectives Outcomes
Course Objectives: This course introduces, develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena related to tissue or organ levels. It is intended for upper level undergraduate students who have been exposed to vectors, differential equations, and undergraduate course(s) in physics and certain aspects of modern biology.
Topics include:
• Biosolid mechanics
• Stress, strain, constitutive equation
• Vector and tensor math
• Equilibrium
• Extension, torsion, bending, buckling
• Material properties of tissues
Student Learning Outcomes: The course will equip the students with a deep understanding of principles of biomechanics. The intuitions gained in this course will help guide the analysis of design of biomedical devices and help the understanding of biological/medical phenomena in health and disease.
The students will develop insight, skills and tools in quantitative analysis of diverse biomechanical systems and topics, spanning various scales from cellular to tissue and organ levels.
Rules & Requirements
Prerequisites: Math 53, 54; Physics 7A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Mofrad
MAT SCI 102 Bonding, Crystallography, and Crystal Defects 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Bonding in solids; classification of metals, semiconductors, and insulators; crystal systems; point, line, and planar defects in crystals; examples of crystallographic and defect analysis in engineering materials; relationship to physical and mechanical properties.
Bonding, Crystallography, and Crystal Defects: Read More [+]
Rules & Requirements
Prerequisites: Engineering 45
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Chrzan
Bonding, Crystallography, and Crystal Defects: Read Less [-]
BIO ENG 103 Engineering Molecules 2 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Thermodynamic and kinetic concepts applied to understanding the chemistry and structure of biomolecules (proteins, membranes, DNA, and RNA) and their thermodynamic and kinetic features in the crowded cellular environment. Topics include entropy, bioenergetics, free energy, chemical potential, reaction kinetics, enzyme kinetics, diffusion and transport, non-equilibrium systems, and their connections to the cellular environment.
Engineering Molecules 2: Read More [+]
Objectives Outcomes
Course Objectives: (1) To introduce the basics of thermodynamics and chemical kinetics for molecular to cellular biological systems; (2) To give students an understanding of biological size and timescales illustrated through computational exercises on model problems in physical biology.
Student Learning Outcomes: students will be able to (1) relate statistical thermodynamics and chemical kinetics to analyze molecular and cellular behavior beyond the ideal gas and Carnot cycle.
Rules & Requirements
Prerequisites: Bio1ogy 1A or Bioengineering 11, Physics 7A-7B, Math 1A, 1B, 53, 54
Credit Restrictions: Students will receive no credit for Bioengineering 103 after completing Chemistry 120B, or Molecular Cell Biology C100A/Chemistry C130.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Head-Gordon
MAT SCI 103 Phase Transformations and Kinetics 3 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
The nature, mechanisms, and kinetics of phase transformations and microstructural changes in the solid state. Atom diffusion in solids. Phase transformations through the nucleation and growth of new matrix or precipitate phases. Martensitic transformations, spinodal decomposition. The use of phase transformations to control microstructure.
Phase Transformations and Kinetics: Read More [+]
Rules & Requirements
Prerequisites: 102 and Engineering 115
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 104 Biological Transport Phenomena 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
The transport of mass, momentum, and energy are critical to the function of living systems and the design of medical devices. Biological transport phenomena are present at a wide range of length scales: molecular, cellular, organ (whole and by functional unit), and organism. This course develops and applies scaling laws and the methods of continuum mechanics to biological transport phenomena over a range of length and time scales. The course is intended for undergraduate students who have taken a course in differential equations and an introductory course in physics. Students should be familiar with basic biology; an understanding of physiology is useful, but not assumed.
Biological Transport Phenomena: Read More [+]
Rules & Requirements
Prerequisites: Mathematics 53, 54, and Physics 7A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Johnson
MAT SCI 104 Materials Characterization 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
Physical and chemical characterization of materials: Diffraction, imaging, and spectroscopy using optical, electron, and X-ray methods for bulk and surface analysis. Measurement of mechanical and physical properties. Project laboratory focusing on mechanical, chemical, electrical, and magnetic properties of materials, and materials characterization. Field trips.
Materials Characterization: Read More [+]
Rules & Requirements
Prerequisites: 102
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Gronsky
BIO ENG 105 Engineering Devices 1 4 Units
Terms offered: Fall 2018
This course provides students with an introduction to medical device design through fundamentals of circuit design/analysis, signal processing, and instrumentation development from concept to market. Important concepts will include impulse responses of systems, op-amps, interference, and noise; the origin of biological signals and recording mechanisms; and design considerations including sensitivity, accuracy, and market potential. This course is designed to be an introduction to these tools and concepts to prepare students to engage deeply and mindfully with device design in their future courses
Engineering Devices 1: Read More [+]
Objectives Outcomes
Course Objectives: ● To prepare students to engage in upper division device design work
● Establish a foundational understanding of biomedical device electronics, signal acquisition, sampling, and reconstruction
● To learn quantitative approaches to analyze biomedical signals
● Reinforce mathematical principles including linear algebra, differential equations
● Establish proficiency in the use of MATLAB as a tool for analyzing biomedical data
Student Learning Outcomes: to give students the mathematical and physical tools required to engage in device design.
Rules & Requirements
Prerequisites: Math 53 and Physics 7A & 7B required
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Moriel Vandsburger
BIO ENG C106A Introduction to Robotics 4 Units
Terms offered: Fall 2018, Fall 2017
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas.
Introduction to Robotics: Read More [+]
Rules & Requirements
Prerequisites: Electrical Engineering 120 or equivalent, consent of instructor
Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106A/Bioengineering C106A after completing EE C106A/BioE C125, Electrical Engineering 206A, or Electrical Engineering and Computer Science 206A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Bajcsy
Also listed as: EECS C106A
BIO ENG C106B Robotic Manipulation and Interaction 4 Units
Terms offered: Spring 2018
This course is a sequel to EECS C106A/Bioengineering C106A, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]
Rules & Requirements
Prerequisites: Electrical Engineering and Computer Science C106A/Bioengineering C106A or consent of the instructor
Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106B/Bioengineering C106B after completing Electrical Engineering C106B/Bioengineering C125B, Electrical Engineering 206B, or Electrical Engineering and Computer Science 206B.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Bajcsy, Sastry
Also listed as: EECS C106B
BIO ENG 110 Biomedical Physiology for Engineers 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course introduces students to the physiology of human organ systems, with an emphasis on quantitative problem solving, engineering-style modeling, and applications to clinical medicine.
Biomedical Physiology for Engineers: Read More [+]
Objectives Outcomes
Course Objectives: This 15-week course will introduce students to the principles of medical physiology, with a strong emphasis on quantitative problem solving, the physiological basis of human disease, and applications to biomedical devices and prostheses.
Student Learning Outcomes: Students will be exposed to the basic physiological systems which govern the function of each organ system, examples of diseases in which these systems go awry, and medical devices which have been developed to correct the deficits.
Rules & Requirements
Prerequisites: BioE 10, BioE 11 or Biology 1A; Math 54 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Kumar
BIO ENG 111 Functional Biomaterials Development and Characterization 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course is intended for upper level engineering undergraduate students interested in the development of novel functional proteins and peptide motifs and characterization of their physical and biological properties using various instrumentation tools in quantitative manners. The emphasis of the class is how to develop novel proteins and peptide motifs, and to characterize their physical and biological functions using various analytical tools in quantitative manners.
Functional Biomaterials Development and Characterization: Read More [+]
Objectives Outcomes
Course Objectives: To provide students with basic and extended concepts for the development of the functional proteins and their characterization for various bioengineering and biomedical purposes.
Student Learning Outcomes: Upon completing the course, the student should be able:
1. To understand the directed evolution processes of functional proteins.
2. To identify the natural protein products from proteomic database.
3. To design various experiments to characterize the new protein products.
4. To develop novel functional proteins and characterize their properties.
5. To understand basic concepts and instrumentation of protein characterization tools.
Rules & Requirements
Prerequisites: Chemistry 1A or 4A, Bio Eng 11 or Biology 1A; Bio Eng 103 or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: SW Lee
Functional Biomaterials Development and Characterization: Read Less [-]
MAT SCI 111 Properties of Electronic Materials 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
Introduction to the physical principles underlying the electric properties of modern solids with emphasis on semiconductors; control of defects and impurities through physical purification, bulk and thin film crystal growth and doping processes, materials basis of electronic and optoelectronic devices (diodes, transistors, semiconductor lasers) and optical fibers; properties of metal and oxide superconductors and their applications.
Properties of Electronic Materials: Read More [+]
Rules & Requirements
Prerequisites: Physics 7A-7B-7C or Physics 7A-7B and consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Dubon, Wu, Yao
MAT SCI 112 Corrosion (Chemical Properties) 3 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
Electrochemical theory of corrosion. Mechanisms and rates in relation to physiochemical and metallurgical factors. Stress corrosion and mechanical influences on corrosion. Corrosion protection by design, inhibition, cathodic protection, and coatings.
Corrosion (Chemical Properties): Read More [+]
Rules & Requirements
Prerequisites: Engineering 45 and Engineering 115
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Devine
BIO ENG C112 Molecular Biomechanics and Mechanobiology of the Cell 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
This course applies methods of statistical continuum mechanics to subcellar biomechanical phenomena ranging from nanoscale (molecular) to microscale (whole cell and cell population) biological processes at the interface of mechanics, biology, and chemistry.
Molecular Biomechanics and Mechanobiology of the Cell: Read More [+]
Objectives Outcomes
Course Objectives: This course, which is open to senior undergraduate students or graduate students in diverse disciplines ranging from engineering to biology to chemistry and physics, is aimed at exposing students to subcellular biomechanical phenomena spanning scales from molecules to the whole cell.
Student Learning Outcomes: The students will develop tools and skills to (1) understand and analyze subcelluar biomechanics and transport phenomena, and (2) ultimately apply these skills to novel biological and biomedical applications
Rules & Requirements
Prerequisites: Math 54; Physics 7A; BioE102 or MEC85 or instructor’s consent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Mofrad
Also listed as: MEC ENG C115
Molecular Biomechanics and Mechanobiology of the Cell: Read Less [-]
BIO ENG 113 Stem Cells and Technologies 4 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
This course will teach the main concepts and current views on key attributes of embryonic stem cells (ESC), will introduce theory of their function in embryonic development, methods of ESC derivation, propagation, and characterization, and will discuss currently developing stem cell technologies.
Stem Cells and Technologies: Read More [+]
Rules & Requirements
Prerequisites: 10 and Biology 1A, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conboy
MAT SCI 113 Mechanical Behavior of Engineering Materials 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course covers elastic and plastic deformation under static and dynamic loads. Prediction and prevention of failure by yielding, fracture, fatigue, wear and environmental factors are addressed. Design issues pertaining to materials selection for load bearing applications are discussed. Case studies of engineering failures are presented. Topics include engineering materials, structure-property relationships, materials selection for design, mechanical behavior of polymers and design of plastic components, complex states of stress and strain, elastic deformation and multiaxial loading, plastic deformation and yield criteria, dislocation plasticity and strengthening mechanisms, creep, effects of stress concentrations, fracture, fatigue, and contact stresses.
Mechanical Behavior of Engineering Materials: Read More [+]
Rules & Requirements
Prerequisites: C30/Mechanical Engineering C85 and Engineering 45
Credit Restrictions: Students will receive no credit for 113 after taking C113 or Mechanical Engineering C124. Deficiency in C113 or Mechanical Engineering C124 maybe removed by taking 113.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ritchie
BIO ENG 114 Cell Engineering 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course will teach the main concepts and current views on key attributes of animal cells (somatic, embryonic, pluripotent, germ-line; with the focus on mammalian cells), will introduce theory of the regulation of cell function, methods for deliberate control of cell properties and resulting biomedical technologies. Techniques for primary cell-line derivation, propagation characterization and therapeutic use (transplantation and drug-screening) will be outlined. Current bioengineering strategies will be discussed.
Cell Engineering: Read More [+]
Objectives Outcomes
Course Objectives: The purpose of this course is to introduce the student to problems associated with the molecular regulation of cell properties, proper selection of in vitro and in vivo conditions and experimental techniques best suited for derivation, propagation and characterization of primary cell lines and provide knowledge of the currently developing cell and tissue engineering technologies. The level of course-work presupposes knowledge of fundamentals of cellular and molecular biology and of biomaterials at the freshman/sophomore undergraduate level.
Student Learning Outcomes: Through class lectures and readings in the theory and experimental methods of cell science, material science and bioengineering the student will gain a fundamental understanding of the principles and techniques guiding the current cell and tissue engineering research. In addition, this course will aid the student in cultivating broad knowledge of the stem cell and regenerative medicine field and in learning about the interface with biomedical and translational sciences.
Rules & Requirements
Prerequisites: Bio1A or Bio Eng 11; or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conboy
BIO ENG 115 Cell Biology for Engineers 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
This course aims to provide a practical understanding of the nature of cell and tissue biology research. Students will be introduced to cell biology techniques as applied to cells and tissues including immunofluorescence, image analysis, protein quantification, protein expression, gene expression, and cell culture. The course culminates with a group project which synthesizes literature review, experimental design, implementation, troubleshooting, and analysis of results.
Cell Biology for Engineers: Read More [+]
Objectives Outcomes
Course Objectives: • To introduce a variety of basic cellular biology laboratory techniques, and develop a conceptual and theoretical understanding of the reliability and limitations of these tools.
• To support students in developing a research question, defining project goals and designing experiments that can be addressed within the constraints of the course.
• To engage students in applying their knowledge and research to others in professional activities such as presentations and papers.
Student Learning Outcomes: Students will gain an understanding of:
• Laboratory safety issues
• Appropriate methods for documenting laboratory procedures
• Phase contrast microscopy
• Fluorescent microscopy
• Image processing
• Cell culture
• Protein quantification, SDS-PAGE, and Western blotting
• Isolation and quantification of mRNA from cells
• RT-PCR
• Data analysis
• Experimental design
Rules & Requirements
Prerequisites: Bioengineering 103 or equivalent, Bioengineering 114 recommended (can be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Lam, Hayley, Irina Conboy
BIO ENG 116 Cell and Tissue Engineering 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
The goal of tissue engineering is to fabricate substitutes to restore tissue structure and functions. Understanding cell function in response to environmental cues will help us to establish design criteria and develop engineering tools for tissue fabrication. This course will introduce the basic concepts and approaches in the field, and train students to design and engineer biological substitutes.
Cell and Tissue Engineering: Read More [+]
Objectives Outcomes
Course Objectives: (1) To introduce the basics of tissue engineering, including quantitative cell and tissue characterization, stem cells, cell-matrix interaction, cell migration, bioreactors, mechanical regulation, tissue preservation, and immuno-modulation/isolation; (2) To illustrate the cutting-edge research in tissue engineering; (3) To enhance the skills in analyzing and designing engineered tissue products.
Student Learning Outcomes: Students will be able to (1) use mathematical models to analyze cell functions (e.g., proliferation, apoptosis, migration) and mechanical property of tissues, (2) understand scientific and ethical issues of stem cells, (3) engineer natural matrix, biomaterials and drug delivery, (4) understand mass transport and design appropriate bioreactors, (5) understand clinical issues such as tissue preservation, immune responses, immunomodulation and immunoisolation, (6) apply the knowledge to engineering biological substitutes.
Rules & Requirements
Prerequisites: BioE 103 or equivalent, BioE 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Li
MAT SCI 117 Properties of Dielectric and Magnetic Materials 3 Units
Terms offered: Spring 2017, Spring 2011, Fall 2010
Introduction to the physical principles underlying the dielectric and magnetic properties of solids. Processing-microstructure-property relationships of dielectric materials, including piezoelectric, pryoelectric, and ferroelectric oxides, and of magnetic materials, including hard- and soft ferromagnets, ferrites and magneto-optic and -resistive materials. The course also covers the properties of grain boundary devices (including varistors) as well as ion-conducting and mixed conducting materials for applications in various devices such as sensors, fuel cells, and electric batteries.
Properties of Dielectric and Magnetic Materials: Read More [+]
Rules & Requirements
Prerequisites: Physics 7A-7B-7C or Physics 7A-7B and consent of instructor; 111 is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Properties of Dielectric and Magnetic Materials: Read Less [-]
BIO ENG C117 Structural Aspects of Biomaterials 4 Units
Terms offered: Spring 2018, Spring 2016, Fall 2013
This course covers the structure and mechanical functions of load bearing tissues and their replacements. Natural and synthetic load-bearing biomaterials for clinical applications are reviewed. Biocompatibility of biomaterials and host response to structural implants are examined. Quantitative treatment of biomechanical issues and constitutive relationships of tissues are covered in order to design biomaterial replacements for structural function. Material selection for load bearing applications including reconstructive surgery, orthopedics, dentistry, and cardiology are addressed. Mechanical design for longevity including topics of fatigue, wear, and fracture are reviewed. Case studies that examine failures of devices are presented.
Structural Aspects of Biomaterials: Read More [+]
Rules & Requirements
Prerequisites: Biology 1A, Engineering 45, Civil and Environmental Engineering 130 or 130N or Bioengineering 102, and Engineering 190
Credit Restrictions: Students will receive no credit for Mechanical Engineering C117 after completing Mechanical Engineering C215/Bioengineering C222.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Pruitt
Also listed as: MEC ENG C117
BIO ENG C118 Biological Performance of Materials 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2015
This course is intended to give students the opportunity to expand their knowledge of topics related to biomedical materials selection and design. Structure-property relationships of biomedical materials and their interaction with biological systems will be addressed. Applications of the concepts developed include blood-materials compatibility, biomimetic materials, hard and soft tissue-materials interactions, drug delivery, tissue engineering, and biotechnology.
Biological Performance of Materials: Read More [+]
Objectives Outcomes
Course Objectives: The course is separated into four parts spanning the principles of synthetic materials and surfaces, principles of biological materials, biological performance of materials and devices, and state-of-the-art materials design. Students are required to attend class and master the material therein. In addition, readings from the clinical, life and materials science literature are assigned. Students are encouraged to seek out additional reference material to complement the readings assigned. A mid-term examination is given on basic principles (parts 1 and 2 of the outline). A comprehensive final examination is given as well.
The purpose of this course is to introduce students to problems associated with the selection and function of biomaterials. Through class lectures and readings in both the physical and life science literature, students will gain broad knowledge of the criteria used to select biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance. Materials used in devices for medicine, dentistry, tissue engineering, drug delivery, and the biotechnology industry will be addressed.
This course also has a significant design component (~35%). Students will form small teams (five or less) and undertake a semester-long design project related to the subject matter of the course. The project includes the preparation of a paper and a 20 minute oral presentation critically analyzing a current material-tissue or material-solution problem. Students will be expected to design improvements to materials and devices to overcome the problems identified in class with existing materials.
Student Learning Outcomes: Apply math, science & engineering principles to the understanding of soft materials, surface chemistry, DLVO theory, protein adsorption kinetics, viscoelasticity, mass diffusion, and molecular (i.e., drug) delivery kinetics.
• Design experiments and analyze data from the literature in the context of the class design project.
Apply core concepts in materials science to solve engineering problems related to the selection biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance.
Develop an understanding of the social, safety and medical consequences of biomaterial use and regulatory issues associated with the selection of biomaterials in the context of the silicone breast implant controversy and subsequent biomaterials crisis.
Work independently and function on a team, and develop solid communication skills (oral, graphic & written) through the class design project.
• Understanding of the origin of surface forces and interfacial free energy, and how they contribute to the development of the biomaterial interface and ultimately biomaterial performance.
Rules & Requirements
Prerequisites: Engin 45; BioE 103 or equivalent; BioE 102 and BioE 104 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Healy
Also listed as: MAT SCI C118
MAT SCI C118 Biological Performance of Materials 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2015
This course is intended to give students the opportunity to expand their knowledge of topics related to biomedical materials selection and design. Structure-property relationships of biomedical materials and their interaction with biological systems will be addressed. Applications of the concepts developed include blood-materials compatibility, biomimetic materials, hard and soft tissue-materials interactions, drug delivery, tissue engineering, and biotechnology.
Biological Performance of Materials: Read More [+]
Objectives Outcomes
Course Objectives: The course is separated into four parts spanning the principles of synthetic materials and surfaces, principles of biological materials, biological performance of materials and devices, and state-of-the-art materials design. Students are required to attend class and master the material therein. In addition, readings from the clinical, life and materials science literature are assigned. Students are encouraged to seek out additional reference material to complement the readings assigned. A mid-term examination is given on basic principles (parts 1 and 2 of the outline). A comprehensive final examination is given as well.
The purpose of this course is to introduce students to problems associated with the selection and function of biomaterials. Through class lectures and readings in both the physical and life science literature, students will gain broad knowledge of the criteria used to select biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance. Materials used in devices for medicine, dentistry, tissue engineering, drug delivery, and the biotechnology industry will be addressed.
This course also has a significant design component (~35%). Students will form small teams (five or less) and undertake a semester-long design project related to the subject matter of the course. The project includes the preparation of a paper and a 20 minute oral presentation critically analyzing a current material-tissue or material-solution problem. Students will be expected to design improvements to materials and devices to overcome the problems identified in class with existing materials.
Student Learning Outcomes: Apply math, science & engineering principles to the understanding of soft materials, surface chemistry, DLVO theory, protein adsorption kinetics, viscoelasticity, mass diffusion, and molecular (i.e., drug) delivery kinetics.
• Design experiments and analyze data from the literature in the context of the class design project.
Apply core concepts in materials science to solve engineering problems related to the selection biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance.
Develop an understanding of the social, safety and medical consequences of biomaterial use and regulatory issues associated with the selection of biomaterials in the context of the silicone breast implant controversy and subsequent biomaterials crisis.
Work independently and function on a team, and develop solid communication skills (oral, graphic & written) through the class design project.
• Understanding of the origin of surface forces and interfacial free energy, and how they contribute to the development of the biomaterial interface and ultimately biomaterial performance.
Rules & Requirements
Prerequisites: Engin 45; BioE 103 or equivalent; BioE 102 and BioE 104 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Healy
Also listed as: BIO ENG C118
BIO ENG C119 Orthopedic Biomechanics 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
Statics, dynamics, optimization theory, composite beam theory, beam-on-elastic foundation theory, Hertz contact theory, and materials behavior. Forces and moments acting on human joints; composition and mechanical behavior of orthopedic biomaterials; design/analysis of artificial joint, spine, and fracture fixation prostheses; musculoskeletal tissues including bone, cartilage, tendon, ligament, and muscle; osteoporosis and fracture-risk predication of bones; and bone adaptation. MATLAB-based project to integrate the course material.
Orthopedic Biomechanics: Read More [+]
Rules & Requirements
Prerequisites: Mechanical Engineering C85, Civil Engineering C30, or Bioengineering 102, or equivalent; concurrent enrollment OK. Proficiency in MatLab or equivalent. Prior knowledge of biology or anatomy is not assumed
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Keaveny
Also listed as: MEC ENG C176
MAT SCI 120 Materials Production 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Economic and technological significance of metals and other materials. Elementary geology (composition of lithosphere, mineralization). Short survey of mining and mineral processing techniques. Review of chemical thermodynamics and reaction kinetics. Principles of process engineering including material, heat, and mechanical energy balances. Elementary heat transfer, fluid flow, and mass transfer. Electrolytic production and refining of metals. Vapor techniques for production of metals and coatings.
Materials Production: Read More [+]
Rules & Requirements
Prerequisites: Engineering 115, Mechanical Engineering 40, Chemical Engineering 141, Chemistry 120B or equivalent thermodynamics course
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 121 BioMEMS and Medical Devices 4 Units
Terms offered: Fall 2018, Spring 2018, Spring 2017
Biophysical and chemical principles of biomedical devices, bionanotechnology, bionanophotonics, and biomedical microelectromechanical systems (BioMEMS). Topics include basics of nano- and microfabrication, soft-lithography, DNA arrays, protein arrays, electrokinetics, electrochemical, transducers, microfluidic devices, biosensor, point of care diagnostics, lab-on-a-chip, drug delivery microsystems, clinical lab-on-a-chip, advanced biomolecular probes, etc.
BioMEMS and Medical Devices: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 3A; Physics 7A and 7B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
6 weeks - 7.5 hours of lecture per week
8 weeks - 5.5 hours of lecture per week
10 weeks - 4.5 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: L. Lee
MAT SCI 121 Metals Processing 3 Units
Terms offered: Spring 2015, Spring 2014, Spring 2013
The principles of metals processing with emphasis on the use of processing to establish microstructures which impart desirable engineering properties. The techniques discussed include solidification, thermal and mechanical processing, powder processing, welding and joining, and surface treatments.
Metals Processing: Read More [+]
Rules & Requirements
Prerequisites: Engineering 45
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Gronsky
BIO ENG 121L BioMems and BioNanotechnology Laboratory 4 Units
Terms offered: Fall 2018, Fall 2016, Fall 2015
Students will become familiar with BioMEMS and Lab-on-a-Chip research. Students will design and fabricate their own novel micro- or nano-scale device to address a specific problem in biotechnology using the latest micro- and nano-technological tools and fabrication techniques. This will involve an intensive primary literature review, experimental design, and quantitative data analysis. Results will be presented during class presentations and at a final poster symposium.
BioMems and BioNanotechnology Laboratory: Read More [+]
Objectives Outcomes
Course Objectives: Students will become familiar with research associated with BioMEMS and Lab-on-a-Chip technologies. Students will gain experience in using creative design to solve a technological problem. Students will learn basic microfabrication techniques. Working in engineering teams, students will learn how to properly characterize a novel device
by choosing and collecting informative metrics. Students will design and carry out carefully controlled experiments that will result in the analysis of quantitative data.
Student Learning Outcomes: Students will learn how to critically read BioMEMS and Lab-on-a-Chip primary literature. Students will learn how to use AutoCAD software to design microscale device features. Students will gain hands-on experience in basic photolithography and soft lithography. Students will get experience with a variety of fluid loading interfaces and
microscopy techniques. Students will learn how to design properly controlled uantitative experiments. Students will gain experience in presenting data to their peers in the form of powerpoint presentations and also at a poster symposium.
Rules & Requirements
Prerequisites: BioE 103 or equivalent, BioE 104
Credit Restrictions: Students will receive no credit for 121L after taking 221L.
Hours & Format
Fall and/or spring: 15 weeks - 6 hours of laboratory and 2 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: D. Liepmann
MAT SCI 122 Ceramic Processing 3 Units
Terms offered: Fall 2012, Fall 2011, Fall 2010
Powder fabrication by grinding and chemical methods, rheological behavior of powder-fluid suspensions, forming methods, drying, sintering, and grain growth. Relation of processing steps to microstructure development.
Ceramic Processing: Read More [+]
Rules & Requirements
Prerequisites: Engineering 45, 115
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
MAT SCI 123 ELECTRONIC MATERIALS PROCESSING 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This 4-unit course starts with a brief review of the fundamentals of solid-state physics including bands and defects in semiconductors and oxides, and then moves to bulk semiconductor crystals growth and processing including doping, diffusion and implantation, and then to thin film deposition and processing methods, and finishes with a discussion of materials analysis and characterization. Recent advances in nanomaterials research will also be introduced.
ELECTRONIC MATERIALS PROCESSING: Read More [+]
Objectives Outcomes
Course Objectives: To prepare students a) for work in semiconductor processing facilities and b) for graduate studies related to thin film processing and relevant materials science topics.
To present the relevant materials science issues in semiconductor and oxide processing
To provide an introduction into the principles of thin film processing and related technologies.
Student Learning Outcomes: Basic knowledge of gas kinetics and vacuum technology, including ideal gas, gas transport theory, definition, creation and measurement of vacuum.
Knowledge of electrical and optical properties of thin films.
Knowledge of the formation of p-n junction to explain the diode operation and its I-V characteristics. Understanding of the mechanisms of Hall Effect, transport, and C-V measurements, so that can calculate carrier concentration, mobility and conductivity given raw experimental data.
The ability to describe major growth techniques of bulk, thin film, and nanostructured semiconductors, with particular emphasis on thin film deposition technologies, including evaporation, sputtering, chemical vapor deposition and epitaxial growths.
To have basic knowledge of doping, purification, oxidation, gettering, diffusion, implantation, metallization, lithography and etching in semiconductor processing.
To have basic knowledge of electronic material characterization methods: x-ray diffraction, SEM and TEM, EDX, Auger, STM and AFM, Rutherford Back Scattering and SIMS, as well as optical methods including photoluminescence, absorption and Raman scattering.
To understand the concepts of bands, bandgap, to distinguish direct and indirect bandgap semiconductors. Understanding of free electron and hole doping of semiconductors to determine Fermi level position.
To understand the effect of defects in semiconductors, so that can describe their electronic and optical behaviors, and the methods to eliminate and control them in semiconductors.
Rules & Requirements
Prerequisites: MSE 111 or Physics 7C or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Wu, Yao
BIO ENG 124 Basic Principles of Drug Delivery 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course focuses on providing students with the foundations needed to understand contemporary literature in drug delivery. Concepts in organic chemistry, biochemistry, and physical chemistry needed to understand current problems in drug delivery are emphasized.
Basic Principles of Drug Delivery: Read More [+]
Objectives Outcomes
Course Objectives: The goal of this course is to give students the ability to understand problems in drug delivery. Emphasis is placed on the design and synthesis of new molecules for drug delivery.
Student Learning Outcomes: At the completion of this course students should be able to design new molecules to solve drug delivery problems.
Rules & Requirements
Prerequisites: BioE 11 or Chem 3B; BioE 103, and BioE 104 (or courses equivalent to these)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Murthy
MAT SCI 125 Thin-Film Materials Science 3 Units
Terms offered: Spring 2016, Spring 2015, Fall 2014
Deposition, processing, and characterization of thin films and their technological applications. Physical and chemical vapor deposition methods. Thin-film nucleation and growth. Thermal and ion processing. Microstructural development in epitaxial, polycrystalline, and amorphous films. Thin-film characterization techniques. Applications in information storage, integrated circuits, and optoelectronic devices. Laboratory demonstrations.
Thin-Film Materials Science: Read More [+]
Rules & Requirements
Prerequisites: Upper division or graduate standing in engineering, physics, chemistry, and chemical engineering; Engineering 45 required; 111 or Physics 141A recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Dubon
BIO ENG C125 Introduction to Robotics 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas.
Introduction to Robotics: Read More [+]
Rules & Requirements
Prerequisites: EE 120 or equivalent, consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Bajcsy
Formerly known as: Electrical Engineering C125/Bioengineering C125
Also listed as: EL ENG C106A
BIO ENG C125B Robotic Manipulation and Interaction 4 Units
Terms offered: Spring 2017, Spring 2016
This course is a sequel to Electrical Engineering C106A/Bioengineering C125, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]
Rules & Requirements
Prerequisites: Electrical Engineering C106A/Bioengineering C125 or consent of the instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Bajcsy, Sastry
Also listed as: EL ENG C106B
MAT SCI 130 Experimental Materials Science and Design 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course provides a culminating experience for students approaching completion of the materials science and engineering curriculum. Laboratory experiments are undertaken in a variety of areas from the investigations on semiconductor materials to corrosion science and elucidate the relationships among structure, processing, properties, and performance. The principles of materials selection in engineering design are reviewed.
Experimental Materials Science and Design: Read More [+]
Rules & Requirements
Prerequisites: Senior standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 131 Introduction to Computational Molecular and Cell Biology 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Topics include computational approaches and techniques to gene structure and genome annotation, sequence alignment using dynamic programming, protein domain analysis, RNA folding and structure prediction, RNA sequence design for synthetic biology, genetic and biochemical pathways and networks, UNIX and scripting languages, basic probability and information theory. Various "case studies" in these areas are reviewed; web-based computational biology tools will be used by students and programming projects will be given. Computational biology research connections to biotechnology will be explored.
Introduction to Computational Molecular and Cell Biology: Read More [+]
Objectives Outcomes
Course Objectives: To introduce the biological databases and file formats commonly used in computational biology. (2) To familiarize students with the use of Unix scripting languages in bioinformatics workflows. (3) To introduce common algorithms for sequence alignment,
RNA structure prediction, phylogeny and clustering, along with fundamentals of probability, information theory and algorithmic complexity analysis.
Student Learning Outcomes: Students will be able to use knowledge from the lectures and lab sessions to write simple programs to parse bioinformatics file formats and execute basic algorithms, to analyze
algorithmic complexity, to navigate and (for simple cases) set up biological databases containing biological data (including sequences, genome annotations and protein structures), and to use basic statistics to interpret results of compbio analyses.
Rules & Requirements
Prerequisites: BioE 11 or Bio 1A (may be taken concurrently), Math 53
Credit Restrictions: Students will receive no credit for 131 after taking 231.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1.5 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Holmes
Introduction to Computational Molecular and Cell Biology: Read Less [-]
BIO ENG 132 Genetic Devices 4 Units
Terms offered: Spring 2018, Fall 2014, Fall 2013
This senior-level course is a comprehensive survey of genetic devices. These DNA-based constructs are comprised of multiple "parts" that together encode a higher-level biological behavior and perform useful human-defined functions. Such constructs are the engineering target for most projects in synthetic biology. Included within this class of constructs are genetic circuits, sensors, biosynthetic pathways, and microbiological functions.
Genetic Devices: Read More [+]
Objectives Outcomes
Course Objectives: (1) To introduce the basic biology and engineering principles for constructing genetic devices including biochemical devices, microbiological devices, genetic circuits, eukaryotic devices, and developmental devices, (2) To familiarize students with current literature examples of genetic devices and develop literature searching skills; (3) To develop the students' ability to apply computational tools to the design of genetic devices.
Student Learning Outcomes: Students will be able to (1) use mathematical models to describe the dynamics of genetic devices, (2) comprehend and evaluate publications related to any type of genetic device, (3) perform a thorough literature search, (4) evaluate the technical plausibility of a proposed genetic device, (5) analyze a design challenge and propose a plausible solution to it in the form of a genetic device, and (6) assess any ethical or safety issues associated with a proposed genetic device.
Rules & Requirements
Prerequisites: Computer Science 61A; Math 53 & 54; Chemistry 3A; Chem 3B or BioE 11; BioE 103 or equivalent
Credit Restrictions: Students will receive no credit for 132 after taking 232.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Anderson
BIO ENG 133 Biomolecular Engineering 3 Units
Terms offered: Prior to 2007
This is an introductory course of biomolecular engineering and is required for all CBE graduate students. Undergraduates with knowledge of thermodynamics and transport are also welcome. The topics include structures, functions, and dynamics of biomolecules; molecular tools in biotechnology; metabolic and signaling networks in cellular engineering; and synthetic biology and biomedical engineering applications.
Biomolecular Engineering: Read More [+]
Objectives Outcomes
Course Objectives: Students are expected to become familiar with the terminologies, molecules, and mechanisms, i.e., the language of biomolecular engineering. At end of this course, you are expected to be able to analyze and critique modern literature in related research areas.
Student Learning Outcomes: Students will be able to (1) understand the biochemical basis for protein folding and enzymatic function, (2) mathematically analyze enzyme function, either individually or as part of a metabolic pathway, (3) engineer novel enzymes using rational, computational, and directed evolution based approaches, (4) understand principles of metabolic engineering and synthetic biology, (5) understand the dynamics and mechanisms of cellular signal transduction, and (6) understand principles for engineering cellular signaling and function.
Rules & Requirements
Prerequisites: Bioengineering 104 or Chemical and Biomolecular Engineering 150A-150B or consent of instructor. A course in statistical mechanics and/or thermodynamics is recommended
Credit Restrictions: Students will receive no credit for Bioengineering 133 after completing Chemical Engineering C274, Molecular and Cell Biology C274 or Bioengineering C233.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Schaffer
BIO ENG 134 Genetic Design Automation 4 Units
Terms offered: Fall 2018, Fall 2017
Genetic Design Automation is the use of software to design and manage genetics experiments. This course introduces the interface between object-oriented programming and wetlab synthetic biology in a hands-on manner. Through a series of programming assignments, each student will build a computer program that automatically designs experiments starting from a formal specification. They will then independently build a new software module of their own design to augment the basic platform
Genetic Design Automation: Read More [+]
Objectives Outcomes
Course Objectives: (1) To develop the skill of translating experimental design into computer code, (2) Develop familiarity with state-of-the-art infrastructure for wetlab automation, (3) Develop proficiency in software development
Student Learning Outcomes: students will be able to (1) Describe molecular biology entities and operations in terms of data structures, (2) Develop moderately-sized computer programs, (3) Write tests and benchmarking suites for biological algorithms (4) Explore different algorithmic approaches to problems and assess their relative merits and efficiencies, (5) Develop proficiency in conceiving and implementing software projects of their own design as they relate to biological problems
Rules & Requirements
Prerequisites: Computer Science 61B; Bioengineering 11; Bioengineering 103 or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: J. Christopher Anderson
BIO ENG 135 Frontiers in Microbial Systems Biology 4 Units
Terms offered: Spring 2017, Fall 2009
This course is aimed at graduate and advanced undergraduate students from the (bio) engineering and chemo-physical sciences interested in a research-oriented introduction to current topics in systems biology. Focusing mainly on two well studied microbiological model systems--the chemotaxis network and Lambda bacteriophage infection--the class systematically introduces key concepts and techniques for biological network deduction, modelling, analysis, evolution, and synthetic network design. Students analyze the impact of approaches from the quantitative sciences--such as deterministic modelling, stochastic processes, statistics, non-linear dynamics, control theory, information theory, graph theory, etc.--on understanding biological processes, including (stochastic) gene regulation, signalling, network evolution, and synthetic network design. The course aims to identify unsolved problems and discusses possible novel approaches while encouraging students to develop ideas to explore new directions in their own research.
Frontiers in Microbial Systems Biology: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing with background in differential equations and probability. Coursework in molecular and cell biology or biochemistry recommended
Credit Restrictions: Students will receive no credit for 135 after taking 235.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Arkin, Bischofs-Pfeifer, Wolf
MAT SCI 136 Materials in Energy Technologies 4 Units
Terms offered: Fall 2017, Fall 2015, Fall 2011
In many, if not all, technologies, it is materials that play a crucial, enabling role. This course examines potentially sustainable technologies, and the materials properties that enable them. The science at the basis of selected energy technologies are examined and considered in case studies.
Materials in Energy Technologies: Read More [+]
Rules & Requirements
Prerequisites: Junior or above standing in Materials Science and Engineering or related field
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Materials Science and Engineering 126
BIO ENG C136L Laboratory in the Mechanics of Organisms 3 Units
Terms offered: Spring 2015, Spring 2014, Spring 2013, Spring 2012
Introduction to laboratory and field study of the biomechanics of animals and plants using fundamental biomechanical techniques and equipment. Course has a series of rotations involving students in experiments demonstrating how solid and fluid mechanics can be used to discover the way in which diverse organisms move and interact with their physical environment. The laboratories emphasize sampling methodology, experimental design, and statistical interpretation of results. Latter third of course devoted to independent research projects. Written reports and class presentation of project results are required.
Laboratory in the Mechanics of Organisms: Read More [+]
Rules & Requirements
Prerequisites: Integrative Biology 135 or consent of instructor; for Electrical Engineering and Computer Science students, Electrical Engineering 105, 120 or Computer Science 184
Credit Restrictions: Students will receive no credit for C135L after taking 135L.
Hours & Format
Fall and/or spring: 15 weeks - 6 hours of laboratory, 1 hour of discussion, and 1 hour of fieldwork per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Integrative Biology 135L
Also listed as: EL ENG C145O/INTEGBI C135L
BIO ENG C137 Designing for the Human Body 3 Units
Terms offered: Fall 2018, Fall 2017
The course provides project-based learning experience in understanding product design, with a focus on the human body as a mechanical machine. Students will learn the design of external devices used to aid or protect the body. Topics will include forces acting on internal materials (e.g., muscles and total replacement devices), forces acting on external materials (e.g., prothetics and crash pads), design/analysis of devices aimed to improve or fix the human body, muscle adaptation, and soft tissue injury. Weekly laboratory projects will incorporate EMG sensing, force plate analysis, and interpretation of data collection (e.g., MATLAB analysis) to integrate course material to better understand contemporary design/analysis/problems.
Designing for the Human Body: Read More [+]
Objectives Outcomes
Course Objectives: The purpose of this course is twofold:
• to learn the fundamental concepts of designing devices to interact with the human body;
• to enhance skills in mechanical engineering and bioengineering by analyzing the behavior of various complex biomedical problems;
• To explore the transition of a device or discovery as it goes from “benchtop to bedside”.
Student Learning Outcomes: RELATIONSHIP OF THE COURSE TO ABET PROGRAM OUTCOMES
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Working knowledge of design considerations for creating a device to protect or aid the human body, force transfer and distribution, data analysis, and FDA approval process for new devices. Understanding of basic concepts in orthopaedic biomechanics and the ability to apply the appropriate engineering concepts to solve realistic biomechanical problems, knowing clearly the assumptions involved. Critical analysis of current literature and technology.
Rules & Requirements
Prerequisites: Proficiency in MatLab or equivalent. Prior knowledge of biology or anatomy is not assumed. Physics 7A, Math 1A and 1B
Credit Restrictions: There will be no credit given for MEC ENG C178 / BIO ENG C137 after taking MEC ENG 178.<BR/><BR/>
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: O'Connell
Formerly known as: Mechanical Engineering 178
Also listed as: MEC ENG C178
MAT SCI 140 Nanomaterials for Scientists and Engineers 3 Units
Terms offered: Spring 2015, Spring 2013, Spring 2012
This course introduces the fundamental principles needed to understand the behavior of materials at the nanometer length scale and the different classes of nanomaterials with applications ranging from information technology to biotechnology. Topics include introduction to different classes of nanomaterials, synthesis and characterization of nanomaterials, and the electronic, magnetic, optical, and mechanical properties of nanomaterials.
Nanomaterials for Scientists and Engineers: Read More [+]
Rules & Requirements
Prerequisites: 102 or equivalent recommended; Physics 7C and Engineering 45 required
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Minor
BIO ENG 140L Synthetic Biology Laboratory 4 Units
Terms offered: Fall 2015, Spring 2015, Fall 2014
This laboratory course is designed as an introduction to research in synthetic biology, a ground-up approach to genetic engineering with applications in bioenergy, heathcare, materials science, and chemical production. In this course, we will design and execute a real research project. Each student will be responsible for designing and constructing components for the group project and then performing experiments to analyze the system. In addition to laboratory work, we will have lectures on methods and design concepts in synthetic biology including an introduction to Biobricks, gene synthesis, computer modeling, directed evolution, practical molecular biology, and biochemistry.
Synthetic Biology Laboratory: Read More [+]
Rules & Requirements
Prerequisites: Molecular biology, basic chemistry and biochemistry, and differential equations; or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Anderson
BIO ENG 143 Computational Methods in Biology 4 Units
Terms offered: Fall 2011, Fall 2010, Fall 2009
An introduction to biophysical simulation methods and algorithms, including molecular dynamics, Monte Carlo, mathematical optimization, and "non-algorithmic" computation such as neural networks. Various case studies in applying these areas in the areas of protein folding, protein structure prediction, drug docking, and enzymatics will be covered. Core Specialization: Core B (Informatics and Genomics); Core D (Computational Biology); BioE Content: Biological.
Computational Methods in Biology: Read More [+]
Rules & Requirements
Prerequisites: Math 53 and Math 54; programming experience preferred but not required
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Head-Gordon
BIO ENG 144 Introduction to Protein Informatics 4 Units
Terms offered: Spring 2017, Fall 2008, Fall 2007
This course will introduce students to the bioinformatics algorithms used by biologists to identify homologs, construct multiple sequence alignments, predict protein structure, estimate phylogenetic trees, identify orthologs, predict protein-protein interaction, and build hidden Markov models. The focus is on the algorithms used, and on the sources of various types of errors in these methods.
Introduction to Protein Informatics: Read More [+]
Objectives Outcomes
Course Objectives: This course is designed to provide a theoretical framework for protein sequence and structure analysis using bioinformatics software tools. Students completing this course will be prepared for subsequent in-depth studies in bioinformatics, for algorithm development, and for the use of bioinformatics methods for biological discovery. It is aimed at two populations: students in the life sciences who need to become expert users of bioinformatics tools, and students in engineering and mathematics/computer science who wish to become the developers of the next generation of bioinformatics methods. As virtually all the problems in this field are very complex, there are many opportunities for research and development of new methods.
Student Learning Outcomes: Students completing this course are likely to find several potential areas of research of interest, which they may want to work on as independent study projects during undergraduate work, or take on as Master’s or Ph.D. thesis topics for advanced work.
Rules & Requirements
Prerequisites: Prior coursework in algorithms. No prior coursework in biology is required. This course includes no programming projects and prior experience in programming is not required
Credit Restrictions: BioE 244 or BioE C244L/PMB C244
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Sjolander
Formerly known as: Bioengineering C144/Plant and Microbial Biology C144
BIO ENG 144L Protein Informatics Laboratory 3 Units
Terms offered: Fall 2008
This course is intended to provide hands-on experience with a variety of bioinformatics tools, web servers, and databases that are used to predict protein function and structure. This course will cover numerous bioinformatics tasks including: homolog detection using BLAST and PSI-BLAST, hidden Markov model construction and use, multiple sequence alignment, phylogenetic tree construction, ortholog identification, protein structure prediction, active site prediction, cellular localization, protein-protein interaction and phylogenomic analysis. Some minimal programming/scripting skills (e.g., Perl or Python) are required to complete some of the labs.
Protein Informatics Laboratory: Read More [+]
Rules & Requirements
Prerequisites: One upper-division course in molecular biology or biochemistry (e.g., MCB C100A/Chem C130 or equivalent). Python programming (e.g., CS 61A) and experience using command-line tools in a Unix environment
Credit Restrictions: Bio Eng 244L or Bio Eng C244L/PMB C244L
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory and 2 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Sjolander
Formerly known as: Bioengineering C144L/Plant and Microbial Biology C144L
BIO ENG 145 Intro to Machine Learning in Computational Biology 4 Units
Terms offered: Fall 2017
This course will review the fundamentals of Data Science and data mining techniques. We will begin by reviewing Data Science across the disciplines, including guest lectures from data scientists on campus. As the semester progresses, we will focus increasingly on data science techniques in computational biology and bioinformatics, illustrating major methods and issues from these fields. Finally, we will discuss ethical issues related to data from biomedical research and genomics.
Intro to Machine Learning in Computational Biology: Read More [+]
Objectives Outcomes
Course Objectives: This course aims to equip students with a foundational understanding of machine learning techniques used in genomics and computational biology. Desired Course Outcomes: Students completing this course should have stronger programming skills, the ability to apply simple machine learning techniques to complex biosequence and genomics data, and an understanding of some of the challenges in genomics and bioinformatics.
Student Learning Outcomes: Students completing this course should have stronger programming skills, the ability to apply simple machine learning techniques to complex biosequence and genomics data, and an understanding of some of the challenges in genomics and bioinformatics.
Rules & Requirements
Prerequisites: CS61B, CS70 or Math 55; CS170 or STAT 132 or STAT 133 ( may be taken concurrently); BioE 144L (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: K. Sjolander
Intro to Machine Learning in Computational Biology: Read Less [-]
BIO ENG C145L Introductory Electronic Transducers Laboratory 3 Units
Terms offered: Fall 2014, Fall 2013, Fall 2012
Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises; construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities.
Introductory Electronic Transducers Laboratory: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenzo
Also listed as: EL ENG C145L
Introductory Electronic Transducers Laboratory: Read Less [-]
BIO ENG C145M Introductory Microcomputer Interfacing Laboratory 3 Units
Terms offered: Spring 2013, Spring 2012, Spring 2011
Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control.
Introductory Microcomputer Interfacing Laboratory: Read More [+]
Rules & Requirements
Prerequisites: EE 16A & 16B
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenzo
Also listed as: EL ENG C145M
Introductory Microcomputer Interfacing Laboratory: Read Less [-]
BIO ENG 147 Principles of Synthetic Biology 4 Units
Terms offered: Fall 2018, Fall 2016, Fall 2015
The field of synthetic biology is quickly emerging as potentially one of the most important and profound ways by which we can understand and manipulate our physical world for desired purposes. In this course, the field and its natural scientific and engineering basis are introduced. Relevant topics in cellular and molecular biology and biophysics, dynamical and engineering systems, and design and operation of natural and synthetic circuits are covered in a concise manner that then allows the student to begin to design new biology-based systems.
Principles of Synthetic Biology: Read More [+]
Objectives Outcomes
Course Objectives: (1) To introduce the basics of Synthetic Biology, including quantitative cellular network characterization and modeling, (2) to introduce the principles of discovery and genetic factoring of useful cellular activities into reusable functions for design, (3) to inculcate the principles of biomolecular system design and diagnosis of designed systems, and (4) to illustrate cutting-edge applications in Synthetic Biology and to enhance skull sin analyzing and designing synthetic biological applications.
Student Learning Outcomes: The goals of this course are to enable students to: (1) design simple cellular circuitry to meet engineering specification using both rational/model-based and library-based approaches, (2) design experiments to characterize and diagnose operation of natural and synthetic biomolecular network functions, and (3) understand scientific, safety and ethical issues of synthetic biology.
Rules & Requirements
Prerequisites: Math 53 and 54; BioE 103 or equivalent or consent of instructor
Credit Restrictions: Students will receive no credit for 147 after taking 247.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Arkin
BIO ENG 148 Bioenergy and Sustainable Chemical Synthesis: Metabolic Engineering and Synthetic Biology Approaches 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course will cover metabolic engineering and the various synthetic biology approaches for optimizing pathway performance. Use of metabolic engineering to produce biofuels and general "green technology" will be emphasized since these aims are currently pushing these fields. The course is meant to be a practical guide for metabolic engineering and the related advances in synthetic biology as well the related industrial research and opportunities.
Bioenergy and Sustainable Chemical Synthesis: Metabolic Engineering and Synthetic Biology Approaches: Read More [+]
Objectives Outcomes
Course Objectives: (1) Learn the common engineered metabolic pathways for biofuel biosynthesis
(2) analytical methods
(3) synthetic biology approaches
(4) Industry technologies and opportunities
Student Learning Outcomes: Students will learn (1) the common pathways used for biofuel synthesis and framework for the biosynthesis of specialty chemicals, (2) analytical methods for quantitative measurements of metabolic pathways, (3) synthetic biology approaches for increasing overall pathway performance, and how to (4) utilize available online resources for culling information from large data sources.
Rules & Requirements
Prerequisites: Chem 3A, BioE 103 or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Dueber
BIO ENG 150 Introduction of Bionanoscience and Bionanotechnology 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course is intended for the bioengineering or engineering undergraduate students interested in acquiring a background in recent development of bio-nanomaterials and bio-nanotechnology. The emphasis of the class is to understand the properties of biological basis building blocks, their assembly principles in nature, and their application to build functional materials and devices.
Introduction of Bionanoscience and Bionanotechnology: Read More [+]
Objectives Outcomes
Course Objectives: I. Basic building blocks and governing forces: This part is intended to enhance the understanding of the structures and properties of biological basic building blocks and their governing forces to assemble the biological materials. This part covers the chemical structures of amino acids, ribonucleic acids, hydrocarbonates, and lipids, and their physical properties depending on the chemical and physical structures. In addition, governing forces (hydrogen bonding, ionic interaction, van der Waals interaction, hydrophobic interactions, etc) to assemble the basic building blocks to form nanostructures will be covered. Tools and methodologies to analyze the chemical structure of the molecules will be introduced. Quantitative analysis of the properties of biological basic building blocks will also be addressed.
II. Case study of the molecular level structures of biological materials. This part is intended to study the examples of biological molecules to enhance understanding the assembly principle of biological materials, including collagens, keratins, spider webs, silks, bio-adhesives as protein based robust materials, bones, sea shells, diatoms, sponges, and, other biominerals as hierarchical nanostructures, and butterfly wings and insect eyes, other periodic structures for optical applications. Through the case study, we will learn how natural materials are designed to solve the challenging problem to be faced in the natural environments and exploit their design principle to develop novel functional materials and devices.
III. Case study of the artificial nanomaterials and devices inspired by biological nature. This part is intended to enhance understanding the recently developed nanostructures and devices to mimic the natural biological materials and organisms. Hybrid functional nanomaterials and devices, such as biological basic building blocks conjugated with inorganic nanocomponents, such as quantum dots, nanowires, nanotubes will be discussed to fabricate various devices including, bio-sensor, bio-nano electronic materials and devices, bio-computing. Nano medicine and bio imaging will also be covered.
The goal is for the bioengineering students to gain sufficient chemical and physical aspects of biological materials through the case study of spider webs, silks, sea shells, diatoms, bones, and teeth, as well as recently developed self-assembled nanostructures inspired by nature.
Student Learning Outcomes: This course is intended for the undergraduate students interested in acquiring a background of recent development of bio-nanomaterials and bio-nanotechnology focused on the materials point of view. Through this course, students will understand the assembly principle of biological materials and their application in bio-nanotechnology.
Rules & Requirements
Prerequisites: BioE 11 or Biology 1A, Chem 1A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: S. W. Lee
Introduction of Bionanoscience and Bionanotechnology: Read Less [-]
MAT SCI C150 Introduction to Materials Chemistry 3 Units
Terms offered: Spring 2018, Spring 2017, Spring 2015, Spring 2014, Spring 2012
The application of basic chemical principles to problems in materials discovery, design, and characterization will be discussed. Topics covered will include inorganic solids, nanoscale materials, polymers, and biological materials, with specific focus on the ways in which atomic-level interactions dictate the bulk properties of matter.
Introduction to Materials Chemistry: Read More [+]
Rules & Requirements
Prerequisites: 104A; 104B is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: CHEM C150
BIO ENG 151 Micro/Nanofluidics for Bioengineering and Lab-On-A-Chip 4 Units
Terms offered: Spring 2015, Spring 2014, Spring 2013
Introduction and in-depth treatment of theory relevant to fluid flow in microfluidic and nanofluidic systems supplemented by critical assessment of recent applications drawn from the literature. Topics include low Reynolds Number flow, mass transport including diffusion phenomena, and emphasis on electrokinetic systems and bioanalytical applications of said phenomena.
Micro/Nanofluidics for Bioengineering and Lab-On-A-Chip: Read More [+]
Objectives Outcomes
Course Objectives: We will study mass and momentum transport phenomena of microscale and nanoscale flow devices. Throughout the course, we will place an emphasis on bioanalytical microfluidic system applications where electrophoresis, electroosmosis, molecular diffusion, and/or Brownian motion effects dominate. Successful completion of the course will prepare students to design micro/nanofluidic engineering solutions, as well as critically assess academic and industrial developments in these areas.
The course is an introduction to the physicochemical dynamics associated with fluid flow in nanoscale and microscale devices for graduate students and advance undergraduate students. The course has been created in response to the active field of microfluidics and nanofluidics, as well as the associated interest from industry, government, and academic research groups. The course provides an theoretical treatment of micro/nanofluidic phenomena that complements the well-established laboratory and research content offered in the Department.
Student Learning Outcomes: 1. To introduce students to the governing principles of fluid flow in microfluidic and nanofluidic regimes, with emphasis on phenomena relevant to bioanalytical devices.
2. To provide students with an understanding of scaling laws that define the performance of microfluidic and nanofluidic systems.
3. To provide students with a detailed investigation of applications that do and do not benefit from miniaturization.
4. To give students adequate didactic background for critical assessment of literature reports and conference presentations regarding advances in the topical areas of microfluidics and nanofluidics.
Rules & Requirements
Prerequisites: BioE 11 or Chem 3B, BioE 104 or ME 106 or consent of instructor
Credit Restrictions: Students will receive no credit for 151 after taking 251.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Herr
Micro/Nanofluidics for Bioengineering and Lab-On-A-Chip: Read Less [-]
MAT SCI 151 Polymeric Materials 3 Units
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course is designed for upper division undergraduate and graduate students to gain a fundamental understanding of the science of polymeric materials. Beginning with a treatment of ideal polymeric chain conformations, it develops the thermodynamics of polmyer blends and solutions, the modeling of polymer networks and gelations, the dynamics of polymer chains, and the morphologies of thin films and other dimensionally-restricted structures relevant to nanotechnology.
Polymeric Materials: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 1A or Engineering 5. 103 is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Xu
BIO ENG 163 Principles of Molecular and Cellular Biophotonics 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course provides undergraduate and graduate bioengineering students with an opportunity to increase their knowledge of topics in the emerging field of biophotonics with an emphasis on fluorescence spectroscopy, biosensors and devices for optical imaging and detection of biomolecules. This course will cover the photophysics and photochemistry of organic molecules, the design and characterization of biosensors and their applications within diverse environments.
Principles of Molecular and Cellular Biophotonics: Read More [+]
Rules & Requirements
Prerequisites: 102 or consent of instructor, Chemistry 3A, and Physics 7B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Marriott
Principles of Molecular and Cellular Biophotonics: Read Less [-]
BIO ENG 163L Molecular and Cellular Biophotonics Laboratory 4 Units
Terms offered: Spring 2018, Spring 2017, Spring 2015
This course provides undergraduate and graduate bioengineering students with an opportunity to acquire essential experimental skills in fluorescence spectroscopy and the design, evaluation, and optimization of optical biosensors for quantitative measurements of proteins and their targets. Groups of students will be responsible for the research, design, and development of a biosensor or diagnostic device for the detection, diagnosis, and monitoring of a specific biomarker(s).
Molecular and Cellular Biophotonics Laboratory: Read More [+]
Rules & Requirements
Prerequisites: Bioengineering 163 and ok to take concurrently
Credit Restrictions: Students will receive no credit for Bioengineering 163L after taking Bioengineering 263L.
Hours & Format
Fall and/or spring: 15 weeks - 6 hours of laboratory and 2 hours of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Marriott
Molecular and Cellular Biophotonics Laboratory: Read Less [-]
BIO ENG 164 Optics and Microscopy 4 Units
Terms offered: Fall 2010, Fall 2009, Fall 2008
This course teaches fundamental principles of optics and examines contemporary methods of optical microscopy for cells and molecules. Students will learn how to design simple optical systems, calculate system performance, and apply imaging techniques including transmission, reflection, phase, and fluorescence microscopy to investigate biological samples. The capabilities of optical microscopy will be compared with complementary techniques including electron microscopy, coherence tomography, and atomic force microscopy. Students will also be responsible for researching their final project outside of class and presenting a specific application of modern microscopy to biological research as part of an end-of-semester project.
Optics and Microscopy: Read More [+]
Rules & Requirements
Prerequisites: Physics 7A-7B or 8A-8B or equivalent introductory physics course
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fletcher
BIO ENG C165 Medical Imaging Signals and Systems 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.
Medical Imaging Signals and Systems: Read More [+]
Rules & Requirements
Prerequisites: Electrical Engineering 16A and 16B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conolly
Also listed as: EL ENG C145B
BIO ENG 168L Practical Light Microscopy 3 Units
Terms offered: Fall 2017, Spring 2015, Fall 2013
This laboratory course is designed for students interested in obtaining practical hands-on training in optical imaging and instrumentation. Using a combination of lenses, cameras, and data acquisition equipment, students will construct simple light microscopes that introduce basic concepts and limitations important in biomedical optical imaging. Topics include compound microscopes, Kohler illumination, Rayleigh two-point resolution, image contrast including dark-field and fluorescence microscopy, and specialized techniques such as fluorescence recovery after photobleaching (FRAP). Intended for students in both engineering and the sciences, this course will emphasize applied aspects of optical imaging and provide a base of practical skill and reference material that students can leverage in their own research or in industry.
Practical Light Microscopy: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fletcher
BIO ENG C181 The Berkeley Lectures on Energy: Energy from Biomass 3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be placed on the integration of the biological aspects (crop selection, harvesting, storage and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-the-art research.
The Berkeley Lectures on Energy: Energy from Biomass: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 1B or Chemistry 4B, Mathematics 1B, Biology 1A
Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor.Repeatable when topic changes with consent of instructor.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bell, Blanch, Clark, Smit, C. Somerville
Also listed as: CHEM C138/CHM ENG C195A/PLANTBI C124
The Berkeley Lectures on Energy: Energy from Biomass: Read Less [-]
BIO ENG 190 Special Topics in Bioengineering 1 - 4 Units
Terms offered: Fall 2017, Fall 2016, Spring 2016
This course covers current topics of research interest in bioengineering. The course content may vary from semester to semester.
Special Topics in Bioengineering: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 192 Senior Design Projects 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This semester-long course introduces students to bioengineering project-based learning in small teams, with a strong emphasis on need-based solutions for real medical and research problems through prototype solution selection, design, and testing. The course is designed to provide a "capstone" design experience for bioengineering seniors. The course is structured around didactic lectures, and a textbook, from which assigned readings will be drawn, and supplemented by additional handouts, readings, and lecture material. Where appropriate, the syllabus includes guest lectures from clinicians and practicing engineers from academia and industry. The course includes active learning through organized activities, during which teams will participate in exercises meant to reinforce lecture material through direct application to the team design project.
Senior Design Projects: Read More [+]
Rules & Requirements
Prerequisites: Senior standing
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Herr
BIO ENG H194 Honors Undergraduate Research 3 or 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised research. Students who have completed 3 or more upper division courses may pursue original research under the direction of one of the members of the staff. May be taken a second time for credit only. A final report or presentation is required. A maximum of 4 units of this course may be used to fulfill the research or technical elective requirement or in the Bioengineering program.
Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division technical GPA 3.3 or higher and consent of instructor and adviser
Repeat rules: Course may be repeated for credit up to a total of 8 units.Course may be repeated for a maximum of 8 units.
Hours & Format
Fall and/or spring: 15 weeks - 3-4 hours of independent study per week
Summer:
8 weeks - 1.5-7.5 hours of independent study per week
10 weeks - 1.5-9 hours of independent study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
MAT SCI H194 Honors Undergraduate Research 1 - 4 Units
Terms offered: Fall 2016, Spring 2016, Fall 2015
Students who have completed a satisfactory number of advanced courses with a grade-point average of 3.3 or higher may pursue original research under the direction of one of the members of the staff. A maximum of 3 units of H194 may be used to fulfill technical elective requirements in the Materials Science and Engineering program or double majors (unlike 198 or 199, which do not satisfy technical elective requirements). Final report required.
Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division technical GPA of 3.3 or higher and consent of instructor and adviser
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 8 weeks - 1.5-7.5 hours of independent study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
BIO ENG 195 Bioengineering Department Seminar 1 Unit
Terms offered: Prior to 2007
This weekly seminar series invites speakers from the bioengineering community, as well as those in related fields, to share their work with our department and other interested parties on the Berkeley campus. The series includes our annual Bioengineering Distinguished Lecture and Rising Star lecture.
Bioengineering Department Seminar: Read More [+]
Objectives Outcomes
Course Objectives: • To introduce students to bioengineering research as it is performed at Berkeley and at other institutions
• To give students opportunities to connect their own work to work in the field overall
• To give students an opportunity to meet with speakers who can inform and contribute to their post-graduation career paths
Student Learning Outcomes: To introduce students to the breadth of bioengineering research, both here at Berkeley and at other institutions, and help them to connect their work here at Berkeley to the field overall.
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Faculty
MAT SCI 195 Special Topics for Advanced Undergraduates 1 Unit
Terms offered: Spring 2012, Spring 2011, Spring 2010
Group study of special topics in materials science and engineering. Selection of topics for further study of underlying concepts and relevent literature, in consultion with appropriate faculty members.
Special Topics for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and good academic standing. (2.0 gpa and above)
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of directed group study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
BIO ENG 196 Undergraduate Design Research 4 Units
Terms offered: Fall 2018, Fall 2017, Summer 2016 10 Week Session
Supervised research. This course will satisfy the Senior Bioengineering Design project requirement. Students with junior or senior status may pursue research under the direction of one of the members of the staff. May be taken a second time for credit only. A final report or presentation is required.
Undergraduate Design Research: Read More [+]
Rules & Requirements
Prerequisites: Junior or senior status, consent of instructor and faculty adviser
Repeat rules: Course may be repeated for credit up to a total of 8 units.Course may be repeated for a maximum of 8 units.
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of independent study per week
Summer: 10 weeks - 6 hours of independent study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
BIO ENG 198 Directed Group Study for Advanced Undergraduates 1 - 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Group study of a selected topic or topics in bioengineering, usually relating to new developments.
Directed Group Study for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and good academic standing. (2.0 grade point average and above)
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer:
6 weeks - 2.5-10 hours of directed group study per week
8 weeks - 1.5-7.5 hours of directed group study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study for Advanced Undergraduates: Read Less [-]
MAT SCI 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units
Terms offered: Fall 2018, Spring 2016, Fall 2015
Group studies of selected topics.
Directed Group Studies for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing in Engineering
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Advanced Undergraduates: Read Less [-]
BIO ENG 199 Supervised Independent Study 1 - 4 Units
Terms offered: Fall 2016, Spring 2016, Fall 2015
Supervised independent study.
Supervised Independent Study: Read More [+]
Rules & Requirements
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricul a section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 2.5-10 hours of independent study per week
8 weeks - 1.5-7.5 hours of independent study per week
10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Bioengineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
MAT SCI 199 Supervised Independent Study 1 - 4 Units
Terms offered: Fall 2016, Spring 2016, Fall 2015
Supervised independent study. Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for a maximum of four units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Faculty and Instructors
+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.
Faculty
John Anderson, Assistant Professor.
Martin S. Banks, Professor. Stereopsis, virtual reality, optometry, multisensory interactions, self-motion perception, vision, depth perception, displays, picture perception, visual ergonomics.
Research Profile
Steven Brenner, Professor. Molecular biology, computational biology, evolutionary biology, bioengineering, structural genomics, computational genomics, cellular activity, cellular functions, personal genomics.
Research Profile
John Canny, Professor. Computer science, activity-based computing, livenotes, mechatronic devices, flexonics.
Research Profile
Jose M. Carmena, Professor. Brain-machine interfaces, neural ensemble computation, neuroprosthetics, sensorimotor learning and control.
Research Profile
Michelle Chang, Associate Professor.
Irina M. Conboy, Associate Professor. Stem cell niche engineering, tissue repair, stem cell aging and rejuvenation.
Research Profile
Yang Dan, Professor. Neuronal circuits, mammalian visual system, electrophysiological, psychophysical and computational techniques, visual cortical circuits, visual neurons.
Research Profile
John Eugene Dueber, Assistant Professor. Synthetic biology, Metabolic Engineering.
Research Profile
+ Robert J. Full, Professor. Energetics, comparative biomechanics, arthropod, adhesion, comparative physiology, locomotion, neuromechanics, biomimicry, biological inspiration, reptile, gecko, amphibian, robots, artificial muscles.
Research Profile
Jack L. Gallant, Professor. Vision science, form vision, attention, fMRI, computational neuroscience, natural scene perception, brain encoding, brain decoding.
Research Profile
Xiaohua Gong, Professor. Optometry, vision science, eye development and diseases, lens development.
Research Profile
Amy Herr, Associate Professor. Microfluidics, bioanalytical separations, diagnostics, electrokinetic transport, engineering design.
Research Profile
Tony M. Keaveny, Professor. Biomechanics of bone, orthopaedic biomechanics, design of artificial joints, osteoporosis, finite element modeling, clinical biomechanics.
Research Profile
Stanley A. Klein, Professor. Optometry, vision science, spatial vision modeling, psychophysical methods and vision test design, corneal topography and contact lens design, source localization of evoked potentials, fMRI, amblyopia.
Research Profile
Luke Lee, Professor. Biophotonics, biophysics, bionanoscience, molecular imaging, single cell analysis, bio-nano interfaces, integrated microfluidic devices (iMD) for diagnostics and preventive personalized medicine.
Research Profile
Seung-Wuk Lee, Associate Professor. Nanotechnology, bio-inspired nanomaterials, synthetic viruses, regenerative tissue engineering materials, drug delivery vehicles.
Research Profile
Song Li, Professor. Bioengineering, vascular tissue engineering, stem cell engineering, mechano-chemical signal transduction, biomimetic matrix, molecules, bioinformatic applications in tissue engineering, molecular dynamics.
Research Profile
Michel Maharbiz, Associate Professor. Neural interfaces, bioMEMS, microsystems, MEMS, microsystems for the life sciences.
Research Profile
Gerard Marriott, Professor.
Richard Mathies, Professor. Genomics, biophysical, bioanalytical, physical chemistry; laser spectroscopy, resonance Raman, excited-state reaction dynamics photoactive proteins, rhodopsins, microfabricated chemical biochemical analysis devices, forensics, infectious disease detection.
Research Profile
Mohammad Mofrad, Professor. Nuclear pore complex and nucleocytoplasmic transport, mechanobiology of disease, cellular mechanotransduction, integrin-mediated focal adhesions.
Research Profile
Niren Murthy, Professor.
+ Alexander Pines, Professor. Theory and experiment in magnetic resonance spectroscopy and imaging, quantum coherence and decoherence, novel concepts and methods including molecular and biomolecular sensors and microfluidics, laser hyperpolarization and detection, laser and zero-field NMR, in areas from material science to biomedicine.
Research Profile
Austin John Roorda, Professor. Adaptive optics, eye, vision, ophthalmoscopy, scanning laser ophthalmoscope, ophthalmology.
Research Profile
Kimmen Sjolander, Professor. Computational biology, algorithms, phylogenetic tree reconstruction, protein structure prediction, multiple sequence alignment, evolution, bioinformatics, hidden Markov models, metagenomics, statistical modeling, phylogenomics, emerging and neglected diseases, machine-learning, genome annotation, metagenome annotation, systems biology, functional site prediction, ortholog identification.
Research Profile
Lydia Sohn, Associate Professor. Micro-nano engineering.
Research Profile
Danielle Tullman-Ercek, Assistant Professor. Bioenergy, synthetic biology, protein engineering, bionanotechnology.
Research Profile
Emeritus Faculty
Thomas F. Budinger, Professor Emeritus. Image processing, biomedical electronics, quantitative aging, cardiovascular physiology, bioastronautics, image reconstruction, nuclear magnetic resonance, positron emission, tomography, reconstruction tomography, inverse problem mathematics.
Research Profile
+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.
Faculty
Joel W. Ager, Adjunct Professor.
Paul Alivisatos, Professor. Physical chemistry, semiconductor nanocrystals, nanoscience, nanotechnology, artificial photosynthesis, solar energy, renewable energy, sustainable energy.
Research Profile
Elke Arenholz, Associate Adjunct Professor.
Mark D. Asta, Professor.
Jillian Banfield, Professor. Nanoscience, Bioremediation, genomics, biogeochemistry, carbon cycling, geomicrobiology, MARS, minerology.
Research Profile
Robert Birgeneau, Professor. Physics, phase transition behavior of novel states of matter.
Research Profile
Gerbrand Ceder, Professor.
Daryl Chrzan, Professor. Materials science and engineering, computational materials science, metals and metallic compounds, defects in solids, growth of nanostructures.
Research Profile
Thomas M. Devine, Professor. Synthesis of nanomaterials, nuclear power, oil production, secondary batteries for electric vehicles, computer disk drives, and synthesis and characterization of metal oxide nanowires, corrosion resistance of materials.
Research Profile
Fiona Doyle, Professor. Electrochemistry, mineral processing, solution processing of materials, interfacial chemistry, extractive metallurgy, remediation of abandoned mines.
Research Profile
Oscar D. Dubon, Professor. Magnetic, optical materials, processing, properties in electronic.
Research Profile
Kevin Healy, Professor. Bioengineering, biomaterials engineering, tissue engineering, bioinspired materials, tissue and organ regeneration, stem cell engineering, microphysiological systems, organs on a chip, drug screening and discovery, multivalent bioconjugate therapeutics.
Research Profile
Frances Hellman, Professor. Condensed matter physics and materials science.
Research Profile
Digby D. Macdonald, Professor in Residence.
Lane W. Martin, Associate Professor. Complex Oxides, novel electronic materials, thin films, materials processing, materials characterization, memory, logic, information technologies, energy conversion, thermal properties, dielectrics, ferroelectrics, pyroelectrics, piezoelectrics, magnetics, multiferroics, transducers, devices.
Research Profile
Phillip B. Messersmith, Professor.
Andrew M. Minor, Professor. Metallurgy, nanomechanics, in situ TEM, electron microscopy of soft materials.
Research Profile
Kristin A. Persson, Assistant Professor. Lithium-ion Batteries.
Research Profile
R. Ramesh, Professor. Processing of complex oxide heterostructures, nanoscale characterization/device structures, thin film growth and materials physics of complex oxides, materials processing for devices, information technologies.
Research Profile
Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile
Miquel B. Salmeron, Adjunct Professor. Molecules, lasers, atoms, materials science and engineering, matter, scanning, tunneling, atomic force microscopies, x-ray photoelectron spectroscopy.
Research Profile
Junqiao Wu, Associate Professor. Semiconductors, nanotechnology, energy materials.
Research Profile
Ting Xu, Associate Professor. Polymer, nanocomposite, biomaterial, membrane, directed self-assembly, drug delivery, protein therapeutics, block copolymers, nanoparticles.
Research Profile
Peidong Yang, Professor. Materials chemistry, sensors, nanostructures, energy conversion, nanowires, miniaturizing optoelectronic devices, photovoltaics, thermoelectrics, solid state lighting.
Research Profile
Jie Yao, Assistant Professor. Optical materials, Nanophotonics, optoelectronics.
Research Profile
Haimei Zheng, Assistant Adjunct Professor.
Lecturers
Matthew Sherburne, Lecturer.
Emeritus Faculty
Robert H. Bragg, Professor Emeritus.
Didier De Fontaine, Professor Emeritus. Phase transformations in alloys, crystallography, thermodynamics of phase changes, particularly ordering reactions, phase separation, calculations of phase equilibria by combined quantum, statistical mechanical methods.
Research Profile
Lutgard De Jonghe, Professor Emeritus. Ceramic properties, advanced ceramics, silicon carbide, densification studies, microstructure development.
Research Profile
James W. Evans, Professor Emeritus. Production of materials, particularly fluid flow, reaction kinetics, mass transport, electrochemical, electromagnetic phenomena governing processes for producing materials, metals, storing energy.
Research Profile
+ Douglas W. Fuerstenau, Professor Emeritus. Mineral processing, extractive metallurgy; application of surface, colloid chemistry to mineral/water systems; fine particle science, technology; principles of comminution, flotation, pelletizing; hydrometallurg, extraction of metals.
Research Profile
Andreas M. Glaeser, Professor Emeritus. Ceramic joining, TLP bonding, brazing, reduced-temperature joining, ceramic-metal joining, ceramic processing, surface and interface properties of ceramics, thermal barrier coatings.
Research Profile
+ Ronald Gronsky, Professor Emeritus. Internal structure of materials, engineering applications.
Research Profile
Eugene E. Haller, Professor Emeritus. Semiconductor crystal growth, characterization of impurities and defects in semiconductors: infrared and microwave detectors, isotopically controlled semiconductors.
Research Profile
Marshal F. Merriam, Professor Emeritus.
+ J. W. Morris, Professor Emeritus. Structural materials, computational materials, the limits of strength, deformation mechanisms, non-destructive testing with SQUID microscopy, mechanisms of grain refinement in high strength steels, lead-free solders for microelectronics.
Research Profile
Eicke R. Weber, Professor Emeritus. Optical materials, magnetic materials, semiconductor thin film growth, device processing in electronic materials.
Research Profile
Contact Information
Department Office, Bioengineering and Materials Science & Engineering
306 Stanley Hall
Phone: 510-642-5833
Fax: 510-642-5835
Department of Materials Science and Engineering
210 Hearst Memorial Mining Building
Phone: 510-642-3801
Fax: 510-643-5792
Department of Bioengineering
306 Stanley Hall
Phone: 510-642-5833
Fax: 510-642-5835
Department Chair, Materials Science and Engineering
Mark Asta, PhD
384 Hearst Memorial Mining Building
Phone: 510-642-3803
Engineering Student Services Adviser
Eugenia Foon
230 Bechtel Engineering Ctr.
Phone: 510-642-7594
Department Chair, Bioengineering
Daniel Fletcher, PhD
306 Stanley Hall
Phone: 510-642-5833