Computer Science

University of California, Berkeley

This is an archived copy of the 2016-17 guide. To access the most recent version of the guide, please visit http://guide.berkeley.edu.

About the Program

Choosing a Computer Science Path

There are two ways to study Computer Science (CS) at UC Berkeley:

  1. Be admitted to the Electrical Engineering & Computer Sciences (EECS) major in the College of Engineering (COE) as a freshman. Admission to the COE, however, is extremely competitive. This option leads to a Bachelor of Science (BS) degree. This path is appropriate for people who want an engineering education.
  2. Enter the College of Letters & Science (L&S) and, after successful completion of the courses required to declare with the minimum grade point average (GPA), petition to be admitted to the L&S Computer Science major. This path is appropriate for people who are interested in a broader education in the sciences and arts (such as double majoring in other L&S fields), and/or are not sure what major to choose.. This option leads to a Bachelor of Arts (BA) degree.

There is no difference in the CS course content between the BS and BA programs. The difference is in what else you take: mainly engineering, or mainly humanities and social sciences. In particular, an interest in hardware suggests the EECS route; an interest in double majoring (for example, in math or cognitive science) suggests the L&S route.

Bachelor of Science (BS) in Computer Science

For information regarding the BS degree, please see the Electrical Engineering and Computer Sciences program  information in this Guide. 

Bachelor of Arts (BA) in Computer Science

This CS major is for students enrolled in the College of Letters & Science (L&S ). Berkeley emphasizes the science of computer science, which means much more than just computer programming. It includes the theory of computation, the design and analysis of algorithms, the architecture and logic design of computers, programming languages, compilers, operating systems, scientific computation, computer graphics, databases, artificial intelligence, and natural language processing. Our goal is to prepare students both for a possible research career and long-term technical leadership in industry. We must therefore look beyond today's technology and give students the primary ideas and the learning skills that will prepare them to teach themselves about tomorrow's technology.

Declaring the Major (BA only)

It is necessary to achieve a minimum prerequisite grade point average (GPA) in order to declare the Computer Science major. Information on this GPA and the process to petition for admission to the major can be found on the Petitioning to the Computer Science Major website.

Transfer students admitted to Berkeley must apply separately to the Computer Science major after matriculating and completing the missing prerequisite courses for declaration. Not all transfer students will meet the criteria required for the major. Therefore, we recommend that transfer students be prepared to pursue an alternative major at Berkeley. Questions may be directed to the CS advising office, 379 Soda Hall, 510-664-4436, or via email at cs-advising@cs.berkeley.edu. 

Five-Year BS/MS Program

This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and/or depth of knowledge, and who would like to try their hand at research as well. For information, please see the Five-Year BS/MS Requirements tab on this page. 

Honors Program

Computer Science majors with an overall GPA of 3.70 or above are eligible to apply to the EECS honors degree program.

Minor Program

A minor in Computer Science is available to all undergraduate students at Berkeley with a declared major, with the exception of EECS majors. For information regarding minor requirements, please see the Minor Requirements tab on this page.

Visit Department Website

Major Requirements (BA)

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All courses taken to fulfill the major requirements below must be 3 or more units and taken for a letter grade.
  2. All courses for the major must be technical in nature. Courses numbered 199, 198, 197, 196, 195, plus select 194, 191, 190, and various seminars do not count. If you are unsure, please check with the CS advisers (cs-advising@cs.berkeley.edu ).

  3. Only one upper division course may be used to simultaneously fulfill requirements for a student's major and minor programs. No more than two upper division courses can overlap between two majors.
  4. A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Prerequisites

COMPSCI 61AThe Structure and Interpretation of Computer Programs4
COMPSCI 61BData Structures4
COMPSCI 70Discrete Mathematics and Probability Theory4

Lower Division Requirement

MATH 1ACalculus4
MATH 1BCalculus4
EL ENG 16ADesigning Information Devices and Systems I4
MATH 54Linear Algebra and Differential Equations4
or EL ENG 16B Designing Information Devices and Systems II
COMPSCI 61CGreat Ideas of Computer Architecture (Machine Structures)4

 Upper Division Requirements

Select one design course from the following:
EECS 149Introduction to Embedded Systems4
EECS 151Introduction to Digital Design and Integrated Circuits3
COMPSCI 152Computer Architecture and Engineering4
COMPSCI 160User Interface Design and Development4
COMPSCI 162Operating Systems and System Programming4
COMPSCI 164Programming Languages and Compilers4
COMPSCI 169Software Engineering4
COMPSCI 184Foundations of Computer Graphics4
COMPSCI 186Introduction to Database Systems4
EL ENG C106AIntroduction to Robotics4
EL ENG C106BRobotic Manipulation and Interaction4
EL ENG C128Feedback Control Systems4
EL ENG 130Integrated-Circuit Devices4
EL ENG 140Linear Integrated Circuits4
EL ENG 143Microfabrication Technology4
EL ENG C149Course Not Available4
EL ENG 192Mechatronic Design Laboratory4
Select at least 8 units of upper division computer science courses from the following, or from the above list:
COMPSCI 161Computer Security4
COMPSCI 168Introduction to the Internet: Architecture and Protocols4
COMPSCI 170Efficient Algorithms and Intractable Problems4
COMPSCI 172Computability and Complexity4
COMPSCI 176Algorithms for Computational Biology4
COMPSCI 186Introduction to Database Systems4
COMPSCI 188Introduction to Artificial Intelligence4
COMPSCI 189Introduction to Machine Learning4
COMPSCI C191Quantum Information Science and Technology3
Select an additional 8 units of upper division computer science courses from the following, or from the above list:
EL ENG 105Microelectronic Devices and Circuits4
EL ENG 113Power Electronics4
EL ENG 117Electromagnetic Fields and Waves4
EL ENG 118Introduction to Optical Engineering3
EL ENG 120Signals and Systems4
EL ENG 121Introduction to Digital Communication Systems4
EL ENG 122Introduction to Communication Networks4
EL ENG 123Digital Signal Processing4
EL ENG 126Probability and Random Processes4
EL ENG 127Course Not Available
EL ENG C128Feedback Control Systems4
EL ENG 129Neural and Nonlinear Information Processing3
EL ENG 130Integrated-Circuit Devices4
EL ENG 134Fundamentals of Photovoltaic Devices4
EL ENG 137AIntroduction to Electric Power Systems4
EL ENG 137BIntroduction to Electric Power Systems4
EL ENG 140Linear Integrated Circuits4
EL ENG 142Integrated Circuits for Communications4
EL ENG 144Fundamental Algorithms for Systems Modeling, Analysis, and Optimization4
EL ENG C145BMedical Imaging Signals and Systems4
EL ENG C145LIntroductory Electronic Transducers Laboratory3
EL ENG C145MIntroductory Microcomputer Interfacing Laboratory3
EL ENG C145OLaboratory in the Mechanics of Organisms3
EL ENG 147Introduction to Microelectromechanical Systems (MEMS)3
Technical electives: In addition to the 20 units of required CS coursework above, 7 units of technical electives can be CS, EE, or from the list of approved non-computer science technical electives (see list below) for a total of 27 units for the major.27

Approved Non-Computer Science Technical Electives

ARCH 122Principles of Computer Aided Architectural Design4
ARCH 129Special Topics in Digital Design Theories and Methods4
ARCH 222Principles of Computer Aided Architectural Design4
ARCH 229Special Topics in Digital Design Theories and Methods4
ART 178Game Design Methods4
ASTRON C162Planetary Astrophysics4
All technical upper division undergraduate and graduate courses in BIO ENG, except BIO ENG 100, C181, 190, 192, and 196
UGBA 102AIntroduction to Financial Accounting3
UGBA 103Introduction to Finance4
UGBA 104Analytic Decision Modeling Using Spreadsheets3
UGBA 119Leading Strategy Implementation3
UGBA 120AAIntermediate Financial Accounting 14
UGBA 120ABIntermediate Financial Accounting 24
UGBA 180Introduction to Real Estate and Urban Land Economics3
All technical upper division undergraduate and graduate courses in CHEM
All technical upper division undergraduate and graduate courses in CHEM ENG, except CHEM ENG 180 and 185
All technical upper division undergraduate and graduate courses in CIV ENG, except CIV ENG 192, CIV ENG 252L, and CIV ENG 290R
COG SCI C100Basic Issues in Cognition3
COG SCI C101The Mind and Language4
COG SCI C126Perception3
COG SCI C127Cognitive Neuroscience3
COG SCI 131Computational Models of Cognition4
COMPSCI 194Special Topics (8- Advanced Animation, 15-Parallel Computing, 16-Introduction to Data Science [discontinued], 26-Computational Photography, 30-Practical Networking, 73-Software Engineering for Scientific Computing, 126-PCP Design, and 133-Collaborative Intelligent Agents and The DARPA Spectrum Challenge)1-4
COMPSCI 261NInternet and Network Security4
COMPSCI 262AAdvanced Topics in Computer Systems4
COMPSCI 262BAdvanced Topics in Computer Systems3
COMPSCI C267Applications of Parallel Computers3
COMPSCI 270Combinatorial Algorithms and Data Structures3
COMPSCI C280Computer Vision3
COMPSCI C281AStatistical Learning Theory3
COMPSCI 288Natural Language Processing4
COMPSCI 294Special Topics (Only 84-Interactive Device Design or 129-Designing and Visualizing Neural Networks)1-4
ECON 100AEconomic Analysis--Micro4
ECON 100BEconomic Analysis--Macro4
ECON 101AEconomic Theory--Micro4
ECON 101BEconomic Theory--Macro4
ECON 136Financial Economics4
ECON 140Economic Statistics and Econometrics4
ECON 141Econometric Analysis4
ECON/DEMOG C175Economic Demography4
All technical upper division undergraduate and graduate courses in EL ENG
All technical upper division undergraduate and graduate courses in ENGIN, except ENGIN 102, 125, 157AC
EPS 104Mathematical Methods in Geophysics4
EPS 122Physics of the Earth and Planetary Interiors3
EPS C162Planetary Astrophysics4
FILM 140Special Topics in Film (Only Sound and Color Theory)4
GEOG 142Climate Dynamics4
GEOG 143Global Change Biogeochemistry3
GEOG C188Geographic Information Systems4
All technical upper division undergraduate and graduate courses in IND ENG, except IND ENG 171, 190 series, and 191 series
INFO 152Course Not Available
INFO 153Course Not Available3
INFO 155Course Not Available3
INFO 213User Interface Design and Development4
INFO 214Needs and Usability Assessment3
INFO 234Information Technology Economics, Strategy, and Policy3
INFO 242Course Not Available
INFO 253Web Architecture3
INFO 256Applied Natural Language Processing3
INFO 257Database Management3
INFO C262Theory and Practice of Tangible User Interfaces4
All technical upper division undergraduate and graduate courses in integrative biology
LINGUIS C105The Mind and Language4
LINGUIS 100Introduction to Linguistic Science4
LINGUIS 120Introduction to Syntax and Semantics4
LINGUIS 158Computational Methods3
All technical upper division undergraduate and graduate courses in MATH, except MATH 160
All technical upper division undergraduate and graduate courses in MECH ENG, except 191K
All technical upper division undergraduate and graduate courses in MCELLBI
MUSIC 108Music Perception and Cognition4
MUSIC 158Musical Applications of Computers and Related Technologies4
MUSIC 158ASound and Music Computing with CNMAT Technologies4
MUSIC 159Computer Programming for Music Applications4
MUSIC 209Advanced Topics in Computer Music4
All technical upper division undergraduate and graduate courses in PHYSICS
NWMEDIA 190Special Topics in New Media (1/290-Critical Practices)4
NWMEDIA C203/MEC ENG C205Critical Making4
NWMEDIA 290Special Topics in New Media (Making Sense of Cultural Data)4
PHILOS 140AIntermediate Logic4
PHILOS 140BIntermediate Logic4
PHILOS 143Modal Logic4
POL SCI C135Game Theory in the Social Sciences4
POL SCI W135Game Theory in the Social Sciences4
PSYCH 102Methods for Research in Psychological Sciences3
PSYCH 128/290QTopical Seminars in Cognitive Psychology3
PB HLTH 142Introduction to Probability and Statistics in Biology and Public Health4
PB HLTH 150AIntroduction to Epidemiology and Human Disease4
PB HLTH 162APublic Health Microbiology3
All technical upper division undergraduate and graduate courses in STAT
THEATER 177Sound Design for Performance4
VIS SCI 265Neural Computation3
 

Five-Year BS/MS

This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and/or depth of knowledge, and who would like to try their hand at research as well. It is not intended for students who have definitely decided to pursue a PhD immediately following graduation. Those students are advised to apply for a PhD program at Berkeley or elsewhere during their senior year. Students who have been accepted into the Five-Year BA/MS or BS/MS are free to change their minds later and apply to enter the PhD program or apply to a PhD program at another university. Note that admission is competitive with all our PhD applicants.

The program is focused on interdisciplinary training at a graduate level; with at least 8 units of course work outside EECS required. Students will emerge as leaders in their technical and professional fields.

  • Focused on interdisciplinary study and more experience in aligned technical fields such as physics, materials science, statistics, biology, etc., and/or professional disciplines such as management of technology, business, law and public policy.
  • If admitted to the program, students must begin the graduate portion in the semester immediately following the conferral of the bachelor's degree.
  • Only one additional year (two semesters) beyond the bachelor's degree.
  • Only available to Berkeley EECS and L&S CS undergraduates.
  • Participants in program may serve as graduate student instructors (GSIs) with approval from their faculty research adviser and the Five-Year MS Committee.
  • Participants in program are self-funded.

For further information regarding this program, please see the department's website

Minor Requirements

Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements and are noted officially on the transcript in the memoranda section, but are not noted on diplomas.

General Guidelines

  1. All courses taken to fulfill the minor requirements below must be taken for graded credit.
  2. A minimum of three of the upper division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
  3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
  4. Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
  5. No more than one upper division course may be used to simultaneously fulfill requirements for a student's major and minor programs.
  6. All minor requirements must be completed prior to the last day of finals during the semester in which you plan to graduate. If you cannot finish all courses required for the minor by that time, please see a College of Letters & Science adviser.
  7. All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)

Requirements

Lower Division Prerequisites
COMPSCI 61AThe Structure and Interpretation of Computer Programs4
COMPSCI 61BData Structures4
or COMPSCI 61BL Data Structures and Programming Methodology
COMPSCI 61CGreat Ideas of Computer Architecture (Machine Structures)4
COMPSCI 70Discrete Mathematics and Probability Theory4
Upper Division
Select three upper division, technical courses in computer science

College Requirements

Undergraduate students in the College of Letters & Science must fulfill the following requirements in addition to those required by their major program.

For detailed lists of courses that fulfill college requirements, please review the College of Letters & Sciences  page in this Guide.

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley. 

American History and American Institutions

The American History and Institutions requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

American Cultures

American Cultures is the one requirement that all undergraduate students at Cal need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

Quantitative Reasoning

The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.

Foreign Language

The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Reading and Composition

In order to provide a solid foundation in reading, writing and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Breadth Requirements

The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements

  • 120 total units, including at least 60 L&S units

  • Of the 120 units, 36 must be upper division units

  • Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements

For units to be considered in "residence," you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.

Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement

After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement

Participants in the UC Education Abroad Program (EAP) or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement

You must complete in residence a minimum of 18 units of upper division courses (excluding EAP units), 12 of which must satisfy the requirements for your major.

Plan of Study (BA)

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.,), please see the Major Requirements tab.

Freshman
FallUnitsSpringUnits 
COMPSCI 104COMPSCI 61A4 
MATH 1A4MATH 1B4 
Reading & Composition A4Reading & Composition B4 
L&S Breadth3L&S Breadth3 
 15 15
Sophomore
FallUnitsSpringUnitsSummerUnits
COMPSCI 61B4COMPSCI 61C4Internship 
EL ENG 16A4COMPSCI 704
OR
 
Lower/Upper Division Elective4L&S Breadth3Study Abroad 
Lower Division Elective3American Cultures Reqt4 
 15 15 0
Junior
FallUnitsSpringUnitsSummerUnits
MATH 54 or EL ENG 16B4Upper Division CS major course (2 of 5)4Internship 
UD CS major course (1 of 5)4Upper Division CS major course (3 of 5)4
OR
 
L&S Breadth4Upper Division Elective major technical elective4Study Abroad 
Lower/Upper Division Elective3Lower/Upper Division Elective3 
 15 15 0
Senior
FallUnitsSpringUnits 
Upper Division CS major course (4 of 5)4Upper Division CS major course (5 of 5)4 
L&S Breadth4Upper Division major technical elective4 
UD L&S Elective4Lower/Upper Division Elective4 
UD L&S Elective3Lower/Upper Division Elective3 
 15 15
Total Units: 120

Course Definitions

Upper Division major CS major course: course meeting the 20 units of upper division CS requirement (at least one of these must be a Design Course).

Upper Division major technical elective: course meeting the 7 units of technical electives requirement.

NOTES

This is a sample program plan. This plan assumes that the student has completed the Entry Level Writing, American History and Institutions, Quantitative Reasoning, and Foreign Language requirements prior to admission.

Students are strongly advised to work with an academic adviser to determine a personal program plan. Your program plan will differ depending on previous credit received, your course schedule, and available offerings.

COMPSCI 152, COMPSCI 162, COMPSCI 164, COMPSCI 169, COMPSCI 170COMPSCI 184, and EECS 151 are known to have heavy workloads. It is not recommended to take these courses in combination.

Accelerated Program Plans

For students considering graduating in less than four years, it's important to acknowledge the reasons to undertake such a plan of study. While there are advantages to pursuing a three-year degree plan such as reducing financial burdens, they are not for everyone and do involve sacrifices; especially with respect to participating in co-curricular activities, depth of study,  and summer internships, which typically lead to jobs upon graduation. All things considered, please see the tables for three and three and a half year degree options.

3.5 and 3 Year Plans

Plan of Study (BS)

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.

Freshman
FallUnitsSpringUnits
MATH 1A4MATH 1B4
COMPSCI 61A4COMPSCI 61B or 61BL4
Natural Science Elective13-5EL ENG 16A4
Reading and Composition course from List A4Reading and Composition course from List B4
 15-17 16
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7A4PHYSICS 7B4
EL ENG 16B4COMPSCI 61C or 61CL4
Humanities/Social Sciences course3-4Humanities/Social Sciences course3-4
 15-16 15-16
Junior
FallUnitsSpringUnits
COMPSCI 704EECS Upper Division Electives28
EECS Upper Division Electives28Humanities/Social Sciences course3-4
Humanities/Social Sciences course3-4Ethics/Social Implications of Technology31-4
 Free Elective2
 15-16 14-18
Senior
FallUnitsSpringUnits
EECS Upper Division Elective24Technical Elective43
Technical Elective43Free Electives12
Free Electives8 
 15 15
Total Units: 120-129
1

Students must complete one course from the following list: ASTRON 7AASTRON 7B, BIOLOGY 1A and BIOLOGY 1AL (must take both), BIOLOGY 1BCHEM 1A and CHEM 1AL (must take both), CHEM 1B, CHEM 3A and CHEM 3AL (must take both), CHEM 3B and CHEM 3BL (must take both), CHEM 4ACHEM 4B, MCELLBI 32 and MCELLBI 32L (must take both), PHYSICS 7C, or an upper-division course of 3 units or more in astronomy, biology, chemistry, earth and planetary science (other than EPS 170AC), integrative biology, molecular cell biology, physics, or plant & microbial biology. This requirement is listed in the freshman year curriculum, but many of the options would not be appropriate for a first year student. Complete this requirement in the semester when it is most appropriate to do so (i.e., take PHYSICS 7C after completing PHYSICS 7B). Your ESS or faculty adviser can help guide your selection on this requirement.

2

Students must complete a minimum of 20 units of upper division EECS courses. One course must provide a major design experience, and be selected from the following list: EECS 149,  EL ENG C128, EL ENG 130, EL ENG 140, EL ENG 141, EL ENG 143, EL ENG C149, EL ENG 192, COMPSCI C149, COMPSCI 150, COMPSCI 160, COMPSCI 162, COMPSCI 164, COMPSCI 169, COMPSCI 184, COMPSCI 186, EECS 151 and EECS 151LA (must take both), EECS 151 and EECS 151LB (must take both).

3

Students must complete one course about engineering ethics or social implications of technology. This may be fulfilled by completing one of the following courses: BIO ENG 100*, COMPSCI 195COMPSCI H195, ENE,RES C100*, ENGIN 125*, ENGIN 157AC*, IAS 157AC*, ISF 100D*. Courses marked with an asterisk fulfill both a humanities/social science requirement and the EECS ethics/social implication of technology requirement.

4

Students must complete a minimum of 45 units of engineering coursework. The 45 units of engineering courses cannot include:

Accelerated Program Plans

For students considering graduating in less than four years, it's important to acknowledge the reasons to undertake such a plan of study. While there are advantages to pursuing a three-year degree plan such as reducing financial burdens, they are not for everyone and do involve sacrifices; especially with respect to participating in co-curricular activities, depth of study,  and summer internships, which typically lead to jobs upon graduation. All things considered, please see the tables for three and three and a half year degree options.

3.5 Year Plan

3 Year Plan

3 Year Plan with Exams

Student Learning Goals

Mission

  1. Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
  2. Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
  3. Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.

Learning Goals for the Major

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
  3. An ability to design systems, components, or processes that conform to given specifications and cost constraints.
  4. An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
  7. An ability to communicate effectively by oral, written, and graphical means.
  8. An awareness of global and societal concerns and their importance in developing engineering solutions.
  9. An ability to independently acquire and apply required information, and an appreciation of the associated process of lifelong learning.
  10. A knowledge of contemporary issues.
  11. An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.

Courses

Select a subject to view courses

Electrical Engineering and Computer Sciences

EECS 47D Completion of work in Electrical Engineering 16A 1 - 3 Units

Terms offered: Not yet offered
This course allows students who have had a linear algebra and/or basic circuit theory course to complete the work in EE16A and be ready for EE16B or EE47E. The course focuses on the fundamentals of designing modern information devices and systems that interface with the real world and provides a comprehensive foundation for core EECS topics in signal processing, learning, control, and circuit design. Modeling is emphasized in a way that deepens mathematical maturity
, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises.
Completion of work in Electrical Engineering 16A: Read More [+]

EECS 47E Completion of work in Electrical Engineering 16B 1 - 3 Units

Terms offered: Not yet offered
This course allows students who have had a linear algebra and/or basic circuit theory course to complete the work in EE16B. The course focuses on the fundamentals of designing modern information devices and systems that interface with the real world and provides a comprehensive foundation for core EECS topics in signal processing (DFT), learning (SVD/PCA), feedback control, and circuit design. Modeling is emphasized in a way that deepens mathematical maturity
, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises.
Completion of work in Electrical Engineering 16B: Read More [+]

EECS 47F Completion of work in Computer Science 70 1 - 3 Units

Terms offered: Not yet offered
This course allows students who have had a discrete math and/or probability course to complete the work in CS70. Logic, infinity, and induction; applications include undecidability and stable marriage problem. Modular arithmetic and GCDs; applications include primality testing and cryptography. Polynomials; examples include error correcting codes and interpolation. Probability including sample spaces, independence, random variables, law of large numbers; examples
include load balancing, existence arguments, Bayesian inference.
Completion of work in Computer Science 70: Read More [+]

EECS C106A Introduction to Robotics 4 Units

Terms offered: Fall 2017
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in
active perception, medical robotics, and other areas.
Introduction to Robotics: Read More [+]

EECS C106B Robotic Manipulation and Interaction 4 Units

Terms offered: Spring 2018
This course is a sequel to EECS C106A/Bioengineering C106A, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation
, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]

EECS 126 Probability and Random Processes 4 Units

Terms offered: Spring 2018, Fall 2017
This course covers the fundamentals of probability and random processes useful in fields such as networks, communication, signal processing, and control. Sample space, events, probability law. Conditional probability. Independence. Random variables. Distribution, density functions. Random vectors. Law of large numbers. Central limit theorem. Estimation and detection. Markov chains.

Probability and Random Processes: Read More [+]

EECS 127 Optimization Models in Engineering 4 Units

Terms offered: Spring 2018, Fall 2017
This course offers an introduction to optimization models and their applications, ranging from machine learning and statistics to decision-making and control, with emphasis on numerically tractable problems, such as linear or constrained least-squares optimization.

Optimization Models in Engineering: Read More [+]

EECS 149 Introduction to Embedded Systems 4 Units

Terms offered: Fall 2017, Fall 2016, Fall 2015
This course introduces students to the basics of modeling, analysis, and design of embedded, cyber-physical systems. Students learn how to integrate computation with physical processes to meet a desired specification. Topics include models of computation, control, analysis and verification, interfacing with the physical world, real-time behaviors, mapping to platforms, and distributed embedded systems. The course has a strong laboratory component
, with emphasis on a semester-long sequence of projects.
Introduction to Embedded Systems: Read More [+]

EECS 151 Introduction to Digital Design and Integrated Circuits 3 Units

Terms offered: Spring 2018, Fall 2017, Spring 2017
An introduction to digital and system design. The material provides a top-down view of the principles, components, and methodologies for large scale digital system design. The underlying CMOS devices and manufacturing technologies are introduced, but quickly abstracted to higher-levels to focus the class on design of larger digital modules for both FPGAs (field programmable gate arrays) and ASICs (application specific integrated circuits).
The class includes extensive use of industrial grade design automation and verification tools for assignments, labs and projects.
The class has two lab options: ASIC Lab (EECS 151LA) and FPGA Lab (EECS 151LB). Students must enroll in at least one of the labs concurrently with the class.

Introduction to Digital Design and Integrated Circuits: Read More [+]

EECS 151LA Application Specific Integrated Circuits Laboratory 2 Units

Terms offered: Spring 2018, Fall 2017, Spring 2017
This lab lays the foundation of modern digital design by first presenting the scripting and hardware description language base for specification of digital systems and interactions with tool flows. The labs are centered on a large design with the focus on rapid design space exploration. The lab exercises culminate with a project design, e.g., implementation of a three-stage RISC-V processor with a register file and caches. The design is mapped
to simulation and layout specification.
Application Specific Integrated Circuits Laboratory: Read More [+]

EECS 151LB Field-Programmable Gate Array Laboratory 2 Units

Terms offered: Spring 2018, Fall 2017, Spring 2017
This lab covers the design of modern digital systems with Field-Programmable Gate Array (FPGA) platforms. A series of lab exercises provide the background and practice of digital design using a modern FPGA design tool flow. Digital synthesis, partitioning, placement, routing, and simulation tools for FPGAs are covered in detail. The labs exercises culminate with a large design project, e.g., an implementation of a full three-stage RISC-V processor
system, with caches, graphics acceleration, and external peripheral components. The design is mapped and demonstrated on an FPGA hardware platform.
Field-Programmable Gate Array Laboratory: Read More [+]

Computer Science

COMPSCI C8 Foundations of Data Science 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
Foundations of data science from three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on
analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social and legal issues surrounding data analysis, including issues of privacy and data ownership.
Foundations of Data Science: Read More [+]

COMPSCI C8R Introduction to Computational Thinking with Data 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Not yet offered
An introduction to computational thinking and quantitative reasoning, preparing students for further coursework, especially Foundations of Data Science (CS/Info/Stat C8). Emphasizes the use of computation to gain insight about quantitative problems with real data. Expressions, data types, collections, and tables in Python. Programming practices, abstraction, and iteration. Visualizing univariate and bivariate
data with bar charts, histograms, plots, and maps. Introduction to statistical concepts including averages and distributions, predicting one variable from another, association and causality, probability and probabilistic simulation. Relationship between numerical functions and graphs. Sampling and introduction to inference.
Introduction to Computational Thinking with Data: Read More [+]

COMPSCI 9A Matlab for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Introduction to the constructs in the Matlab programming language, aimed at students who already know how to program. Array and matrix operations, functions and function handles, control flow, plotting and image manipulation, cell arrays and structures, and the Symbolic Mathematics toolbox.

Matlab for Programmers: Read More [+]

COMPSCI 9C C for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Self-paced course in the C programming language for students who already know how to program. Computation, input and output, flow of control, functions, arrays, and pointers, linked structures, use of dynamic storage, and implementation of abstract data types.

C for Programmers: Read More [+]

COMPSCI 9D Scheme and Functional Programming for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Self-paced course in functional programming, using the Scheme programming language, for students who already know how to program. Recursion; higher-order functions; list processing; implementation of rule-based querying.

Scheme and Functional Programming for Programmers: Read More [+]

COMPSCI 9E Productive Use of the UNIX Environment 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Use of UNIX utilities and scripting facilities for customizing the programming environment, organizing files (possibly in more than one computer account), implementing a personal database, reformatting text, and searching for online resources.

Productive Use of the UNIX Environment: Read More [+]

COMPSCI 9F C++ for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Self-paced introduction to the constructs provided in the C++ programming language for procedural and object-oriented programming, aimed at students who already know how to program.

C++ for Programmers: Read More [+]

COMPSCI 9G JAVA for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Self-paced course in Java for students who already know how to program. Applets; variables and computation; events and flow of control; classes and objects; inheritance; GUI elements; applications; arrays, strings, files, and linked structures; exceptions; threads.

JAVA for Programmers: Read More [+]

COMPSCI 9H Python for Programmers 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Introduction to the constructs provided in the Python programming language, aimed at students who already know how to program. Flow of control; strings, tuples, lists, and dictionaries; CGI programming; file input and output; object-oriented programming; GUI elements.

Python for Programmers: Read More [+]

COMPSCI 10 The Beauty and Joy of Computing 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
An introduction to the beauty and joy of computing. The history, social implications, great principles, and future of computing. Beautiful applications that have changed the world. How computing empowers discovery and progress in other fields. Relevance of computing to the student and society will be emphasized. Students will learn the joy of programming a computer using
a friendly, graphical language, and will complete a substantial team programming project related to their interests.
The Beauty and Joy of Computing: Read More [+]

COMPSCI W10 The Beauty and Joy of Computing 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2012
This course meets the programming prerequisite for 61A. An introduction to the beauty and joy of computing. The history, social implications, great principles, and future of computing. Beautiful applications that have changed the world. How computing empowers discovery and progress in other fields. Relevance of computing to the student and society will be emphasized. Students will learn the joy of programming a
computer using a friendly, graphical language, and will complete a substantial team programming project related to their interests.
The Beauty and Joy of Computing: Read More [+]

COMPSCI 36 CS Scholars Seminar: The Educational Climate in CS & CS61A technical discussions 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018
Computer Science 36 is a seminar for CS Scholars who are concurrently taking CS61A: The Structure and Interpretation of Computer Programs. CS Scholars is a cohort-model program to provide support in exploring and potentially declaring a CS major for students with little to no computational background prior to coming to the university. CS 36 provides an introduction to the CS curriculum at UC Berkeley, and the
overall CS landscape in both industry and academia—through the lens of accessibility and its relevance to diversity. Additionally, CS36 provides technical instruction to review concepts in CS61A, in order to support CS Scholars’ individual learning and success in the CS61A course.
CS Scholars Seminar: The Educational Climate in CS & CS61A technical discussions: Read More [+]

COMPSCI 39 Freshman/Sophomore Seminar 1.5 - 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Spring 2017
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39J Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2010, Spring 2010, Fall 2009
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39K Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2013, Spring 2011, Spring 2010
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39M Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2008
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39N Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2010, Fall 2009
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39P Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2013, Spring 2013, Fall 2012
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39Q Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2011
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 39R Freshman/Sophomore Seminar 1.5 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Spring 2013
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

COMPSCI 47A Completion of Work in Computer Science 61A 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Implementation of generic operations. Streams and iterators. Implementation techniques for supporting functional, object-oriented, and constraint-based programming in the Scheme programming language. Together with 9D, 47A constitutes an abbreviated, self-paced version of 61A for students who have already taken a course equivalent to 61B.

Completion of Work in Computer Science 61A: Read More [+]

COMPSCI 47B Completion of Work in Computer Science 61B 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Iterators. Hashing, applied to strings and multi-dimensional structures. Heaps. Storage management. Design and implementation of a program containing hundreds of lines of code. Students with sufficient partial credit in 61B may, with consent of instructor, complete the credit in this self-paced course.

Completion of Work in Computer Science 61B: Read More [+]

COMPSCI 47C Completion of Work in Computer Science 61C 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
MIPS instruction set simulation. The assembly and linking process. Caches and virtual memory. Pipelined computer organization. Students with sufficient partial credit in 61C may, with consent of instructor, complete the credit in this self-paced course.

Completion of Work in Computer Science 61C: Read More [+]

COMPSCI 61A The Structure and Interpretation of Computer Programs 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
An introduction to programming and computer science focused on abstraction techniques as means to manage program complexity. Techniques include procedural abstraction; control abstraction using recursion, higher-order functions, generators, and streams; data abstraction using interfaces, objects, classes, and generic operators; and language abstraction using interpreters
and macros. The course exposes students to programming paradigms, including functional, object-oriented, and declarative approaches. It includes an introduction to asymptotic analysis of algorithms. There are several significant programming projects.
The Structure and Interpretation of Computer Programs: Read More [+]

COMPSCI 61AS The Structure and Interpretation of Computer Programs (Self-Paced) 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Summer 2015 8 Week Session
Introductory programming and computer science. Abstraction as means to control program complexity. Programming paradigms: functional, object-oriented, client/server, and declarative (logic). Control abstraction: recursion and higher order functions. Introduction to asymptotic analysis of algorithms. Data abstraction: abstract data types, type-tagged data, first class data
types, sequences implemented as lists and as arrays, generic operators implemented with data-directed programming and with message passing. Implementation of object-oriented programming with closures over dispatch procedures. Introduction to interpreters and compilers. There are several significant programming projects. Course may be completed in one or two semesters. Students must complete a mimimum of two units during their first semester of 61AS.
The Structure and Interpretation of Computer Programs (Self-Paced): Read More [+]

COMPSCI 61B Data Structures 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Fundamental dynamic data structures, including linear lists, queues, trees, and other linked structures; arrays strings, and hash tables. Storage management. Elementary principles of software engineering. Abstract data types. Algorithms for sorting and searching. Introduction to the Java programming language.

Data Structures: Read More [+]

COMPSCI 61BL Data Structures and Programming Methodology 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Summer 2017 8 Week Session, Summer 2016 10 Week Session, Summer 2016 8 Week Session
The same material as in 61B, but in a laboratory-based format.

Data Structures and Programming Methodology: Read More [+]

COMPSCI 61C Great Ideas of Computer Architecture (Machine Structures) 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
The internal organization and operation of digital computers. Machine architecture, support for high-level languages (logic, arithmetic, instruction sequencing) and operating systems (I/O, interrupts, memory management, process switching). Elements of computer logic design. Tradeoffs involved in fundamental architectural design decisions.

Great Ideas of Computer Architecture (Machine Structures): Read More [+]

COMPSCI 61CL Machine Structures (Lab-Centric) 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2009, Spring 2009, Fall 2008
The same material as in 61C but in a lab-centric format.

Machine Structures (Lab-Centric): Read More [+]

COMPSCI W61A The Structure and Interpretation of Computer Programs (Online) 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Not yet offered
An introduction to programming and computer science focused on abstraction techniques as means to manage program complexity. Techniques include procedural abstraction; control abstraction using recursion, higher-order functions, generators, and streams; data abstraction using interfaces, objects, classes, and generic operators; and language abstraction using interpreters and macros. The course exposes students
to programming paradigms, including functional, object-oriented, and declarative approaches. It includes an introduction to asymptotic analysis of algorithms. There are several significant programming projects.
The Structure and Interpretation of Computer Programs (Online): Read More [+]

COMPSCI 70 Discrete Mathematics and Probability Theory 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
Logic, infinity, and induction; applications include undecidability and stable marriage problem. Modular arithmetic and GCDs; applications include primality testing and cryptography. Polynomials; examples include error correcting codes and interpolation. Probability including sample spaces, independence, random variables, law of large numbers; examples include load balancing
, existence arguments, Bayesian inference.
Discrete Mathematics and Probability Theory: Read More [+]

COMPSCI C79 Societal Risks and the Law 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2013
Defining, perceiving, quantifying and measuring risk; identifying risks and estimating their importance; determining whether laws and regulations can protect us from these risks; examining how well existing laws work and how they could be improved; evaluting costs and benefits. Applications may vary by term. This course cannot be used to complete engineering unit or technical elective requirements for students
in the College of Engineering.
Societal Risks and the Law: Read More [+]

COMPSCI 88 Computational Structures in Data Science 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2016, Spring 2016
Development of Computer Science topics appearing in Foundations of Data Science (C8); expands computational concepts and techniques of abstraction. Understanding the structures that underlie the programs, algorithms, and languages used in data science and elsewhere. Mastery of a particular programming language while studying general techniques for managing program complexity, e.g., functional
, object-oriented, and declarative programming. Provides practical experience with composing larger systems through several significant programming projects.
Computational Structures in Data Science: Read More [+]

COMPSCI 94 Special Topics 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2015
Topics will vary semester to semester. See the Computer Science Division announcements.

Special Topics: Read More [+]

COMPSCI 97 Field Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2015, Spring 2015, Fall 2014
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.

Field Study: Read More [+]

COMPSCI 98 Directed Group Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2016, Fall 2015, Spring 2015
Seminars for group study of selected topics, which will vary from year to year. Intended for students in the lower division.

Directed Group Study: Read More [+]

COMPSCI 99 Individual Study and Research for Undergraduates 1 - 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2015, Fall 2014, Spring 2014
A course for lower division students in good standing who wish to undertake a program of individual inquiry initiated jointly by the student and a professor. There are no other formal prerequisites, but the supervising professor must be convinced that the student is able to profit by the program.

Individual Study and Research for Undergraduates: Read More [+]

COMPSCI C100 Principles & Techniques of Data Science 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
In this course, students will explore the data science lifecycle, including question formulation, data collection and cleaning, exploratory data analysis and visualization, statistical inference and prediction​, and decision-making.​ This class will focus on quantitative critical thinking​ and key principles and techniques needed to carry out this cycle. These include languages for transforming
, querying and analyzing data; algorithms for machine learning methods including regression, classification and clustering; principles behind creating informative data visualizations; statistical concepts of measurement error and prediction; and techniques for scalable data processing.
Principles & Techniques of Data Science: Read More [+]

COMPSCI 146L Programmable Digital Systems Laboratory 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2015
Hardware description languages for digital system design and interactions with tool flows. Design, implementation, and verification of digital designs. Digital synthesis, partitioning, placement, routing, and simulation for Field-Programmable Gate Arrays. Large digital-system design concepts. Project design component – example, a full processor implementation with peripherals.

Programmable Digital Systems Laboratory: Read More [+]

COMPSCI 152 Computer Architecture and Engineering 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2016, Spring 2016
Instruction set architecture, microcoding, pipelining (simple and complex). Memory hierarchies and virtual memory. Processor parallelism: VLIW, vectors, multithreading. Multiprocessors.

Computer Architecture and Engineering: Read More [+]

COMPSCI 160 User Interface Design and Development 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
The design, implementation, and evaluation of user interfaces. User-centered design and task analysis. Conceptual models and interface metaphors. Usability inspection and evaluation methods. Analysis of user study data. Input methods (keyboard, pointing, touch, tangible) and input models. Visual design principles. Interface prototyping and implementation methodologies and
tools. Students will develop a user interface for a specific task and target user group in teams.
User Interface Design and Development: Read More [+]

COMPSCI 161 Computer Security 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Introduction to computer security. Cryptography, including encryption, authentication, hash functions, cryptographic protocols, and applications. Operating system security, access control. Network security, firewalls, viruses, and worms. Software security, defensive programming, and language-based security. Case studies from real-world systems.

Computer Security: Read More [+]

COMPSCI 162 Operating Systems and System Programming 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Basic concepts of operating systems and system programming. Utility programs, subsystems, multiple-program systems. Processes, interprocess communication, and synchronization. Memory allocation, segmentation, paging. Loading and linking, libraries. Resource allocation, scheduling, performance evaluation. File systems, storage devices, I/O systems. Protection, security, and privacy.

Operating Systems and System Programming: Read More [+]

COMPSCI 164 Programming Languages and Compilers 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Survey of programming languages. The design of modern programming languages. Principles and techniques of scanning, parsing, semantic analysis, and code generation. Implementation of compilers, interpreters, and assemblers. Overview of run-time organization and error handling.

Programming Languages and Compilers: Read More [+]

COMPSCI 168 Introduction to the Internet: Architecture and Protocols 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
This course is an introduction to the Internet architecture. We will focus on the concepts and fundamental design principles that have contributed to the Internet's scalability and robustness and survey the various protocols and algorithms used within this architecture. Topics include layering, addressing, intradomain routing, interdomain routing, reliable delivery, congestion control, and
the core protocols (e.g., TCP, UDP, IP, DNS, and HTTP) and network technologies (e.g., Ethernet, wireless).
Introduction to the Internet: Architecture and Protocols: Read More [+]

COMPSCI 169 Software Engineering 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Summer 2017 8 Week Session, Fall 2016
Ideas and techniques for designing, developing, and modifying large software systems. Function-oriented and object-oriented modular design techniques, designing for re-use and maintainability. Specification and documentation. Verification and validation. Cost and quality metrics and estimation. Project team organization and management. Students will work in teams on a substantial
programming project.
Software Engineering: Read More [+]

COMPSCI 170 Efficient Algorithms and Intractable Problems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Concept and basic techniques in the design and analysis of algorithms; models of computation; lower bounds; algorithms for optimum search trees, balanced trees and UNION-FIND algorithms; numerical and algebraic algorithms; combinatorial algorithms. Turing machines, how to count steps, deterministic and nondeterministic Turing machines, NP-completeness. Unsolvable and intractable probl
ems.
Efficient Algorithms and Intractable Problems: Read More [+]

COMPSCI 172 Computability and Complexity 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Finite automata, Turing machines and RAMs. Undecidable, exponential, and polynomial-time problems. Polynomial-time equivalence of all reasonable models of computation. Nondeterministic Turing machines. Theory of NP-completeness: Cook's theorem, NP-completeness of basic problems. Selected topics in language theory, complexity and randomness.

Computability and Complexity: Read More [+]

COMPSCI 174 Combinatorics and Discrete Probability 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Permutations, combinations, principle of inclusion and exclusion, generating functions, Ramsey theory. Expectation and variance, Chebychev's inequality, Chernov bounds. Birthday paradox, coupon collector's problem, Markov chains and entropy computations, universal hashing, random number generation, random graphs and probabilistic existence bounds.

Combinatorics and Discrete Probability: Read More [+]

COMPSCI 176 Algorithms for Computational Biology 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
Algorithms and probabilistic models that arise in various computational biology applications: suffix trees, suffix arrays, pattern matching, repeat finding, sequence alignment, phylogenetics, genome rearrangements, hidden Markov models, gene finding, motif finding, stochastic context free grammars, RNA secondary structure. There are no biology prerequisites for this course, but a strong quantitative
background will be essential.
Algorithms for Computational Biology: Read More [+]

COMPSCI 184 Foundations of Computer Graphics 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Fall 2016
Techniques of modeling objects for the purpose of computer rendering: boundary representations, constructive solids geometry, hierarchical scene descriptions. Mathematical techniques for curve and surface representation. Basic elements of a computer graphics rendering pipeline; architecture of modern graphics display devices. Geometrical transformations such as rotation, scaling, translation
, and their matrix representations. Homogeneous coordinates, projective and perspective transformations. Algorithms for clipping, hidden surface removal, rasterization, and anti-aliasing. Scan-line based and ray-based rendering algorithms. Lighting models for reflection, refraction, transparency.
Foundations of Computer Graphics: Read More [+]

COMPSCI 186 Introduction to Database Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Access methods and file systems to facilitate data access. Hierarchical, network, relational, and object-oriented data models. Query languages for models. Embedding query languages in programming languages. Database services including protection, integrity control, and alternative views of data. High-level interfaces including application generators, browsers, and report writers. Introduction
to transaction processing. Database system implementation to be done as term project.
Introduction to Database Systems: Read More [+]

COMPSCI 188 Introduction to Artificial Intelligence 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Ideas and techniques underlying the design of intelligent computer systems. Topics include search, game playing, knowledge representation, inference, planning, reasoning under uncertainty, machine learning, robotics, perception, and language understanding.

Introduction to Artificial Intelligence: Read More [+]

COMPSCI 189 Introduction to Machine Learning 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Theoretical foundations, algorithms, methodologies, and applications for machine learning. Topics may include supervised methods for regression and classication (linear models, trees, neural networks, ensemble methods, instance-based methods); generative and discriminative probabilistic models; Bayesian parametric learning; density estimation and clustering; Bayesian networks; time series
models; dimensionality reduction; programming projects covering a variety of real-world applications.
Introduction to Machine Learning: Read More [+]

COMPSCI C191 Quantum Information Science and Technology 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2017, Fall 2014, Spring 2012
This multidisciplinary course provides an introduction to fundamental conceptual aspects of quantum mechanics from a computational and informational theoretic perspective, as well as physical implementations and technological applications of quantum information science. Basic sections of quantum algorithms, complexity, and cryptography, will be touched upon, as well as pertinent physical
realizations from nanoscale science and engineering.
Quantum Information Science and Technology: Read More [+]

COMPSCI 194 Special Topics 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Topics will vary semester to semester. See the Computer Science Division announcements.

Special Topics: Read More [+]

COMPSCI 195 Social Implications of Computer Technology 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Topics include electronic community; the changing nature of work; technological risks; the information economy; intellectual property; privacy; artificial intelligence and the sense of self; pornography and censorship; professional ethics. Students will lead discussions on additional topics.

Social Implications of Computer Technology: Read More [+]

COMPSCI H195 Honors Social Implications of Computer Technology 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2014, Fall 2013, Spring 2013
Topics include electronic community; the changing nature of work; technological risks; the information economy; intellectual property; privacy; artificial intelligence and the sense of self; pornography and censorship; professional ethics. Students may lead discussions on additional topics.

Honors Social Implications of Computer Technology: Read More [+]

COMPSCI H196A Senior Honors Thesis Research 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2016, Fall 2010, Spring 2010
Thesis work under the supervision of a faculty member. To obtain credit the student must, at the end of two semesters, submit a satisfactory thesis to the Electrical Engineering and Computer Science department archive. A total of four units must be taken. The units many be distributed between one or two semesters in any way. H196A-H196B count as graded technical elective units, but may not
be used to satisfy the requirement for 27 upper division technical units in the College of Letters and Science with a major in Computer Science.
Senior Honors Thesis Research: Read More [+]

COMPSCI H196B Senior Honors Thesis Research 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2010, Spring 2009, Fall 2008
Thesis work under the supervision of a faculty member. To obtain credit the student must, at the end of two semesters, submit a satisfactory thesis to the Electrical Engineering and Computer Science department archive. A total of four units must be taken. The units many be distributed between one or two semesters in any way. H196A-H196B count as graded technical elective units, but may
not be used to satisfy the requirement for 27 upper division technical units in the College of Letters and Science with a major in Computer Science.
Senior Honors Thesis Research: Read More [+]

COMPSCI 197 Field Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2016, Summer 2016 10 Week Session, Fall 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.

Field Study: Read More [+]

COMPSCI 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Group study of selected topics in Computer Sciences, usually relating to new developments.

Directed Group Studies for Advanced Undergraduates: Read More [+]

COMPSCI 199 Supervised Independent Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2016, Fall 2015, Spring 2015
Supervised independent study. Enrollment restrictions apply.

Supervised Independent Study: Read More [+]

Electrical Engineering

EL ENG 16A Designing Information Devices and Systems I 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Summer 2017 8 Week Session
This course and its follow-on course EE16B focus on the fundamentals of designing modern information devices and systems that interface with the real world. Together, this course sequence provides a comprehensive foundation for core EECS topics in signal processing, learning, control, and circuit design while introducing key linear-algebraic concepts motivated by application
contexts. Modeling is emphasized in a way that deepens mathematical maturity, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises. The courses are aimed at entering students as well as non-majors seeking a broad foundation for the field.
Designing Information Devices and Systems I: Read More [+]

EL ENG 16B Designing Information Devices and Systems II 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
This course is a follow-on to Electrical Engineering 16A, and focuses on the fundamentals of designing and building modern information devices and systems that interface with the real world. The course sequence provides a comprehensive introduction to core EECS topics in circuit design, signals, and systems in an application-driven context. The courses are delivered assuming mathematical
maturity and aptitude at roughly the level of having completed Math 1A-1B, and are aimed at entering students as well as non-majors seeking a broad introduction to the field.
Designing Information Devices and Systems II: Read More [+]

EL ENG 24 Freshman Seminar 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Spring 2017, Spring 2016
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments, and topics may vary from department to department and semester to semester.

Freshman Seminar: Read More [+]

EL ENG 25 What Electrical Engineers Do--Feedback from Recent Graduates 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2011
A Berkeley Electrical Engineering and Computer Sciences degree opens the door to many opportunities, but what exactly are they? Graduation is only a few years away and it's not too early to find out. In this seminar students will hear from practicing engineers who recently graduated. What are they working on? Are they working in a team? What do they wish they had learned better? How did they find their jobs?

What Electrical Engineers Do--Feedback from Recent Graduates: Read More [+]

EL ENG 39 Freshman/Sophomore Seminar 2 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Fall 2016
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

EL ENG 42 Introduction to Digital Electronics 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2013, Summer 2013 8 Week Session, Spring 2013
This course serves as an introduction to the principles of electrical engineering, starting from the basic concepts of voltage and current and circuit elements of resistors, capacitors, and inductors. Circuit analysis is taught using Kirchhoff's voltage and current laws with Thevenin and Norton equivalents. Operational amplifiers with feedback are introduced as basic building
blocks for amplication and filtering. Semiconductor devices including diodes and MOSFETS and their IV characteristics are covered. Applications of diodes for rectification, and design of MOSFETs in common source amplifiers are taught. Digital logic gates and design using CMOS as well as simple flip-flops are introduced. Speed and scaling issues for CMOS are considered. The course includes as motivating examples designs of high level applications including logic circuits, amplifiers, power supplies, and communication links.
Introduction to Digital Electronics: Read More [+]

EL ENG 43 Introductory Electronics Laboratory 1 Unit

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2013, Summer 2013 8 Week Session, Spring 2013
Using and understanding electronics laboratory equipment such as oscilloscope, power supplies, function generator, multimeter, curve-tracer, and RLC-meter. Includes a term project of constructing and testing a robot or other appropriate electromechanical device.

Introductory Electronics Laboratory: Read More [+]

EL ENG 49 Electronics for the Internet of Things 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018
Electronics has become pervasive in our lives as a powerful technology with applications in a wide range of fields including healthcare, environmental monitoring, robotics, or entertainment. This course teaches how to build electronic circuits that interact with the environment through sensors and actuators and how to communicate wirelessly with the internet to cooperate with other devices and with humans. In
the laboratory students design and build representative samples such as solar harvesters, robots, that exchange information with or are controlled from the cloud.
Electronics for the Internet of Things: Read More [+]

EL ENG 84 Sophomore Seminar 1 or 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Spring 2016, Fall 2015
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.

Sophomore Seminar: Read More [+]

EL ENG 97 Field Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.

Field Study: Read More [+]

EL ENG 98 Directed Group Study for Undergraduates 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2016, Spring 2016, Fall 2015
Group study of selected topics in electrical engineering, usually relating to new developments.

Directed Group Study for Undergraduates: Read More [+]

EL ENG 99 Individual Study and Research for Undergraduates 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised independent study and research for students with fewer than 60 units completed.

Individual Study and Research for Undergraduates: Read More [+]

EL ENG 105 Microelectronic Devices and Circuits 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
This course covers the fundamental circuit and device concepts needed to understand analog integrated circuits. After an overview of the basic properties of semiconductors, the p-n junction and MOS capacitors are described and the MOSFET is modeled as a large-signal device. Two port small-signal amplifiers and their realization using single stage and multistage CMOS building blocks are
discussed. Sinusoidal steady-state signals are introduced and the techniques of phasor analysis are developed, including impedance and the magnitude and phase response of linear circuits. The frequency responses of single and multi-stage amplifiers are analyzed. Differential amplifiers are introduced.
Microelectronic Devices and Circuits: Read More [+]

EL ENG C106A Introduction to Robotics 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion
detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas.
Introduction to Robotics: Read More [+]

EL ENG C106B Robotic Manipulation and Interaction 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2017, Spring 2016
This course is a sequel to Electrical Engineering C106A/Bioengineering C125, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for
interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]

EL ENG 113 Power Electronics 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Power conversion circuits and techniques. Characterization and design of magnetic devices including transformers, reactors, and electromagnetic machinery. Characteristics of bipolar and MOS power semiconductor devices. Applications to motor control, switching power supplies, lighting, power systems, and other areas as appropriate.

Power Electronics: Read More [+]

EL ENG 117 Electromagnetic Fields and Waves 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Review of static electric and magnetic fields and applications; Maxwell's equations; transmission lines; propagation and reflection of plane waves; introduction to guided waves, microwave networks, and radiation and antennas. Minilabs on statics, transmission lines, and waves.

Electromagnetic Fields and Waves: Read More [+]

EL ENG 118 Introduction to Optical Engineering 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
Fundamental principles of optical systems. Geometrical optics and aberration theory. Stops and apertures, prisms, and mirrors. Diffraction and interference. Optical materials and coatings. Radiometry and photometry. Basic optical devices and the human eye. The design of optical systems. Lasers, fiber optics, and holography.

Introduction to Optical Engineering: Read More [+]

EL ENG 120 Signals and Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Continuous and discrete-time transform analysis techniques with illustrative applications. Linear and time-invariant systems, transfer functions. Fourier series, Fourier transform, Laplace and Z-transforms. Sampling and reconstruction. Solution of differential and difference equations using transforms. Frequency response, Bode plots, stability analysis. Illustrated by analysis of communication
systems and feedback control systems.
Signals and Systems: Read More [+]

EL ENG 121 Introduction to Digital Communication Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2014, Fall 2013
Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding, channel coding, baseband and passband modulation techniques, receiver design, and channel equalization. Applications to design of digital telephone modems, compact disks, and digital wireless communication systems. Concepts illustrated by a sequence of MATLAB
exercises.
Introduction to Digital Communication Systems: Read More [+]

EL ENG 122 Introduction to Communication Networks 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course focuses on the fundamentals of the wired and wireless communication networks. The course covers both the architectural principles for making these networks scalable and robust, as well as the key techniques essential for analyzing and designing them. The topics include graph theory, Markov chains, queuing, optimization techniques, the physical and link layers, switching,
transport, cellular networks and Wi-Fi.
Introduction to Communication Networks: Read More [+]

EL ENG 123 Digital Signal Processing 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Discrete time signals and systems: Fourier and Z transforms, DFT, 2-dimensional versions. Digital signal processing topics: flow graphs, realizations, FFT, chirp-Z algorithms, Hilbert transform relations, quantization effects, linear prediction. Digital filter design methods: windowing, frequency sampling, S-to-Z methods, frequency-transformation methods, optimization methods, 2-dimensional
filter design.
Digital Signal Processing: Read More [+]

EL ENG 126 Probability and Random Processes 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2017, Fall 2016, Spring 2016
This course covers the fundamentals of probability and random processes useful in fields such as networks, communication, signal processing, and control. Sample space, events, probability law. Conditional probability. Independence. Random variables. Distribution, density functions. Random vectors. Law of large numbers. Central limit theorem. Estimation and detection. Markov chains.

Probability and Random Processes: Read More [+]

EL ENG C128 Feedback Control Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Analysis and synthesis of linear feedback control systems in transform and time domains. Control system design by root locus, frequency response, and state space methods. Applications to electro-mechanical and mechatronics systems.

Feedback Control Systems: Read More [+]

EL ENG 129 Neural and Nonlinear Information Processing 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2010, Fall 2009, Spring 2009
Principles of massively parallel real-time computation, optimization, and information processing via nonlinear dynamics and analog VLSI neural networks, applications selected from image processing, pattern recognition, feature extraction, motion detection, data compression, secure communication, bionic eye, auto waves, and Turing patterns.

Neural and Nonlinear Information Processing: Read More [+]

EL ENG 130 Integrated-Circuit Devices 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Overview of electronic properties of semiconductor. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.

Integrated-Circuit Devices: Read More [+]

EL ENG 134 Fundamentals of Photovoltaic Devices 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
This course is designed to give an introduction to, and overview of, the fundamentals of photovoltaic devices. Students will learn how solar cells work, understand the concepts and models of solar cell device physics, and formulate and solve relevant physical problems related to photovoltaic devices. Monocrystalline, thin film and third generation solar cells will be discussed and analyzed.
Light management and economic considerations in a solar cell system will also be covered.
Fundamentals of Photovoltaic Devices: Read More [+]

EL ENG 137A Introduction to Electric Power Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
Overview of conventional electric power conversion and delivery, emphasizing a systemic understanding of the electric grid with primary focus at the transmission level, aimed toward recognizing needs and opportunities for technological innovation. Topics include aspects of a.c. system design, electric generators, components of transmission and distribution systems, power flow analysis, system
planning and operation, performance measures, and limitations of legacy technologies.
Introduction to Electric Power Systems: Read More [+]

EL ENG 137B Introduction to Electric Power Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Overview of recent and potential future evolution of electric power systems with focus on new and emerging technologies for power conversion and delivery, primarily at the distribution level. Topics include power electronics applications, solar and wind generation, distribution system design and operation, electric energy storage, information management and communications, demand response
, and microgrids.
Introduction to Electric Power Systems: Read More [+]

EL ENG 140 Linear Integrated Circuits 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Single and multiple stage transistor amplifiers. Operational amplifiers. Feedback amplifiers, 2-port formulation, source, load, and feedback network loading. Frequency response of cascaded amplifiers, gain-bandwidth exchange, compensation, dominant pole techniques, root locus. Supply and temperature independent biasing and references. Selected applications of analog circuits such as analog-to-digital
converters, switched capacitor filters, and comparators. Hardware laboratory and design project.
Linear Integrated Circuits: Read More [+]

EL ENG 142 Integrated Circuits for Communications 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Spring 2016, Spring 2015
Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodu
lators.
Integrated Circuits for Communications: Read More [+]

EL ENG 143 Microfabrication Technology 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Fall 2017, Spring 2017
Integrated circuit device fabrication and surface micromachining technology. Thermal oxidation, ion implantation, impurity diffusion, film deposition, expitaxy, lithography, etching, contacts and interconnections, and process integration issues. Device design and mask layout, relation between physical structure and electrical/mechanical performance. MOS transistors and poly-Si surface
microstructures will be fabricated in the laboratory and evaluated.
Microfabrication Technology: Read More [+]

EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2015, Fall 2014, Fall 2013
The modeling, analysis, and optimization of complex systems requires a range of algorithms and design software. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and
correctly in software. Laboratory assignments and a class project will expose students to state-of-the-art tools.
Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read More [+]

EL ENG C145B Medical Imaging Signals and Systems 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse
response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.
Medical Imaging Signals and Systems: Read More [+]

EL ENG C145L Introductory Electronic Transducers Laboratory 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2014, Fall 2013, Fall 2012
Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises;
construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities.
Introductory Electronic Transducers Laboratory: Read More [+]

EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2013, Spring 2012, Spring 2011
Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling
, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control.
Introductory Microcomputer Interfacing Laboratory: Read More [+]

EL ENG C145O Laboratory in the Mechanics of Organisms 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2015, Spring 2014, Spring 2013, Spring 2012
Introduction to laboratory and field study of the biomechanics of animals and plants using fundamental biomechanical techniques and equipment. Course has a series of rotations involving students in experiments demonstrating how solid and fluid mechanics can be used to discover the way in which diverse organisms move and interact with their physical environment. The laboratories
emphasize sampling methodology, experimental design, and statistical interpretation of results. Latter third of course devoted to independent research projects. Written reports and class presentation of project results are required.
Laboratory in the Mechanics of Organisms: Read More [+]

EL ENG 146L Application Specific Integrated Circuits Laboratory 2 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2015
This is a lab course that covers the design of modern Application-Specific Integrated Circuits (ASICs). The labs lay the foundation of modern digital design by first setting-up the scripting and hardware description language base for specification of digital systems and interactions with tool flows. Software testing of digital designs is covered leading into a set of labs that cover the design flow. Digital synthesis
, floorplanning, placement and routing are covered, as well as tools to evaluate design timing and power. Chip-level assembly is covered, instantiation of custom IP blocks: I/O pads, memories, PLLs, etc. The labs culminate with a project design – implementation of a 3-stage RISC-V processor with register file and caches.
Application Specific Integrated Circuits Laboratory: Read More [+]

EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Fall 2015
This course will teach fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication. It will pay special attention to teaching of fundamentals necessary for the design and analysis of devices and systems in mechanical
, electrical, fluidic, and thermal energy/signal domains, and will teach basic techniques for multi-domain analysis. Fundamentals of sensing and transduction mechanisms including capacitive and piezoresistive techniques, and design and analysis of micmicromachined miniature sensors and actuators using these techniques will be covered.
Introduction to Microelectromechanical Systems (MEMS): Read More [+]

EL ENG 192 Mechatronic Design Laboratory 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Spring 2016
Design project course, focusing on application of theoretical principles in electrical engineering to control of a small-scale system, such as a mobile robot. Small teams of students will design and construct a mechatronic system incorporating sensors, actuators, and intelligence.

Mechatronic Design Laboratory: Read More [+]

EL ENG 194 Special Topics 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Fall 2015
Topics will vary semester to semester. See the Electrical Engineering announcements.

Special Topics: Read More [+]

EL ENG H196A Senior Honors Thesis Research 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester
receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B.
Senior Honors Thesis Research: Read More [+]

EL ENG H196B Senior Honors Thesis Research 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Spring 2015, Spring 2014
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester
receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B.
Senior Honors Thesis Research: Read More [+]

EL ENG 197 Field Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2016, Fall 2015, Spring 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.

Field Study: Read More [+]

EL ENG 198 Directed Group Study for Advanced Undergraduates 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Spring 2018, Spring 2017, Fall 2016
Group study of selected topics in electrical engineering, usually relating to new developments.

Directed Group Study for Advanced Undergraduates: Read More [+]

EL ENG 199 Supervised Independent Study 1 - 4 Units

Offered through: Electrical Engin and Computer Sci
Terms offered: Fall 2017, Fall 2016, Summer 2016 8 Week Session
Supervised independent study. Enrollment restrictions apply.

Supervised Independent Study: Read More [+]

Contact Information

Department of Electrical Engineering and Computer Science

379 Soda Hall

Phone: 510-664-4436

Visit Department Website

Letters & Science

Computer Science

http://ls-advise.berkeley.edu/major/compsci.html

College of Engineering

Electrical Engineering and Computer Sciences

http://www.eecs.berkeley.edu/

Department Chair

Tsu-Jae King Liu, PhD

510-642-0253

tking@eecs.berkeley.edu

Executive Director, Center for Student Affairs

Susanne Kauer

221 Cory Hall

Phone: 510-642-3694

skauer@eecs.berkeley.edu

Director of Undergraduate Matters and Computer Science Advising

Christopher Hunn

377 Soda Hall

Phone: 510-642-7214

cthunn@eecs.berkeley.edu

CS Scholars Program Coordinator/CS Adviser

Charlene Hughes

203 Cory Hall

Phone: 510-642-2357

cdhughes@eecs.berkeley.edu

Computer Science Adviser

Lily Zhang

379 Soda Hall

Phone: 510-664-4436

lilyz@eecs.berkeley.edu

Policy and Enrollment Specialist

Michael-David Sasson

379 Soda Hall

Phone: 510-643-6002

sasson@berkeley.edu

Back to Top