About the Program
Graduate work leading to the PhD degree is offered in the Department of Physics. Students may petition for an MA degree on their way to a PhD. Please note that the department will not consider applications from students who intend to work toward the MA degree only. In certain cases, students may petition for a terminal MA degree. Research is a major part of the PhD program, and research opportunities exist across the full spectrum of theoretical and experimental physics in astrophysics and cosmology, atomic, molecular and optical physics, biophysics, condensed matter, elementary particles and fields, fusion and plasma, low temperature physics, mathematical physics, nuclear physics, quantum information, space physics, and statistical mechanics.
At the Lawrence Berkeley National Laboratory, extensive opportunities exist for research in astrophysics, elementary particle and nuclear physics, condensed matter physics and materials science, and plasma and nuclear physics. Space physics, interplanetary studies, solar plasma research, physics of the upper atmosphere, and cosmological problems are pursued both in the Physics Department and at the Space Sciences Laboratory.
Admissions
Admission to the University
Uniform minimum requirements for admission
The following minimum requirements apply to all programs and will be verified by the Graduate Division:
- A bachelor’s degree or recognized equivalent from an accredited institution;
- A minimum grade-point average of B or better (3.0);
- If the applicant comes from a country or political entity (e.g. Quebec) where English is not the official language, adequate proficiency in English to do graduate work, as evidenced by a TOEFL score of at least 570 on the paper-and-pencil test, 230 on the computer-based test, 90 on the iBT test, or an IELTS Band score of at least 7 (note that individual programs may set higher levels for any of these); and
- Enough undergraduate training to do graduate work in the given field.
Applicants who already hold a graduate degree
The Graduate Council views academic degrees as evidence of broad research training, not as vocational training certificates; therefore, applicants who already have academic graduate degrees should be able to take up new subject matter on a serious level without undertaking a graduate program, unless the fields are completely dissimilar.
Programs may consider students for an additional academic master’s or professional master’s degree if the additional degree is in a distinctly different field.
Applicants admitted to a doctoral program that requires a master’s degree to be earned at Berkeley as a prerequisite (even though the applicant already has a master’s degree from another institution in the same or a closely allied field of study) will be permitted to undertake the second master’s degree, despite the overlap in field.
The Graduate Division will admit students for a second doctoral degree only if they meet the following guidelines:
- Applicants with doctoral degrees may be admitted for an additional doctoral degree only if that degree program is in a general area of knowledge distinctly different from the field in which they earned their original degree. For example, a physics PhD could be admitted to a doctoral degree program in music or history; however, a student with a doctoral degree in mathematics would not be permitted to add a PhD in statistics.
- Applicants who hold the PhD degree may be admitted to a professional doctorate or professional master’s degree program if there is no duplication of training involved.
Applicants may only apply to one single degree program or one concurrent degree program per admission cycle.
Any applicant who was previously registered at Berkeley as a graduate student, no matter how briefly, must apply for readmission, not admission, even if the new application is to a different program.
Required documents for admissions applications
- Transcripts: Upload unofficial transcripts with the application for the departmental initial review. Official transcripts of all college-level work will be required if admitted. Official transcripts must be in sealed envelopes as issued by the school(s) you have attended. Request a current transcript from every post-secondary school that you have attended, including community colleges, summer sessions, and extension programs. If you have attended Berkeley, upload unofficial transcript with the application for the departmental initial review. Official transcript with evidence of degree conferral will not be required if admitted.
- Letters of recommendation: Applicants can request online letters of recommendation through the online application system. Hard copies of recommendation letters must be sent directly to the program, not the Graduate Division.
- Evidence of English language proficiency: All applicants from countries in which the official language is not English are required to submit official evidence of English language proficiency. This requirement applies to applicants from Bangladesh, Burma, Nepal, India, Pakistan, Latin America, the Middle East, the People’s Republic of China, Taiwan, Japan, Korea, Southeast Asia, and most European countries. However, applicants who, at the time of application, have already completed at least one year of full-time academic course work with grades of B or better at a U.S. university may submit an official transcript from the U.S. university to fulfill this requirement. The following courses will not fulfill this requirement: 1) courses in English as a Second Language, 2) courses conducted in a language other than English, 3) courses that will be completed after the application is submitted, and 4) courses of a non-academic nature. If applicants have previously been denied admission to Berkeley on the basis of their English language proficiency, they must submit new test scores that meet the current minimum from one of the standardized tests.
Admission to the Program
The Department of Physics ordinarily admits only those applicants who have scholastic records well above a B+ average and who have completed the equivalent of the undergraduate major in physics. This program includes upper-division courses in mechanics (4 semester units), electromagnetism and optics (8 semester units), statistical and thermal physics (4 semester units), quantum mechanics (8 semester units), and advanced undergraduate laboratory (5 semester units). Courses in atomic, nuclear and solid state physics, astronomy and applied mathematics are recommended as electives. Not all courses in the major are required for admission. Some courses required for the major program but not previously taken may have to be made up in the first year of graduate work. Applicants are required to submit a list of courses taken in physics and mathematics with course number, and applicable textbook, as well as a list of courses in progress.
In determining the admissibility of a prospective graduate student the Department attempts to carefully weigh all relevant factors, including transcripts of academic work, scores on the GRE, letters of recommendation, any research experience, and a statement of purpose. We recognize the diverse experiences of our applicants and therefore encourage them to submit supporting materials.
The graduate program in physics is designed for those intending to pursue work leading to the PhD. After completing the necessary course work requirements, an MA degree can be awarded. However, the Department does not consider applications from those intending to work toward the MA degree only.
Doctoral Degree Requirements
Normative Time Requirements
Students enter the program with different training and backgrounds and because thesis research by its very nature is unpredictable, the time-frame for individual students will vary. Nevertheless, failure to meet the goals set forth here without appropriate justification may indicate that the student is not making adequate progress towards the PhD, and will therefore prompt consideration by the Department and possibly by Graduate Division of the student’s progress, which might lead to probation and later dismissal. See the Physics Department's website for more information on the expectations for the progress of a typical graduate student from admission to award of a PhD.
Time to Advancement
Curriculum
Courses Required | ||
PHYSICS 209 | Classical Electromagnetism | 5 |
PHYSICS 211 | Equilibrium Statistical Physics | 4 |
PHYSICS 221A/221B | Quantum Mechanics | 5 |
Physics electives: | ||
Graduate | 11 | |
Graduate/Upper Division | 8 |
Preliminary Exams
The preliminary examination is a written examination and is designed to ensure that students command a broad spectrum of undergraduate physics prior to engaging in graduate research. The written exam is composed of four sections, and all four sections of the preliminary exam are offered at the beginning of both Fall and Spring semesters. Additional information can be found on our website .
QE
After the beginning of research and no later than completion of four semesters of research, the student is expected to take an oral qualifying examination covering his or her research field and related areas. The examination is administered by a four-member committee (consisting of three physics and one outside faculty member) approved by the Graduate Council.
Further details can be found on our website .
Teaching Opportunities
Students who meet the December deadline will automatically be considered for GSI positions. Additional information is available on the department's website .
Non-native speakers of English must prove their proficiency in spoken English before they can hold GSI positions. Additional information is available on the department's website .
Courses
Physics
PHYSICS C201 Introduction to Nano-Science and Engineering 3 Units
A three-module introduction to the fundamental topics of Nano-Science and Engineering (NSE) theory and research within chemistry, physics, biology, and engineering. This course includes quantum and solid-state physics; chemical synthesis, growth fabrication, and characterization techniques; structures and properties of semiconductors, polymer, and biomedical materials on nanoscales; and devices based on nanostructures. Students must take this course to satisfy the NSE Designated Emphasis core requirement.
Rules & Requirements
Prerequisites: Major in physical science such as chemistry, physics, etc., or engineering; consent of advisor or instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Instructors: Gronsky, S.W. Lee, Wu
Also listed as: BIO ENG C280/MAT SCI C261/NSE C201
PHYSICS C202 Astrophysical Fluid Dynamics 4 Units
Principles of gas dynamics, self-gravitating fluids, magnetohydrodynamics and elementary kinetic theory. Aspects of convection, fluid oscillations, linear instabilities, spiral density waves, shock waves, turbulence, accretion disks, stellar winds, and jets.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Instructors: Chiang, Kasen, Ma, Quataert, White
Also listed as: ASTRON C202
PHYSICS C203 Computational Nanoscience 3 Units
A multidisciplinary overview of computational nanoscience for both theorists and experimentalists. This course teaches the main ideas behind different simulation methods; how to decompose a problem into "simulatable" constituents; how to simulate the same thing two different ways; knowing what you are doing and why thinking is still important; the importance of talking to experimentalists; what to do with your data and how to judge its validity; why multiscale modeling is both important and nonsense.
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Also listed as: NSE C242
PHYSICS 205A Advanced Dynamics 4 Units
Lagrange and Hamiltonian dynamics, variational methods, symmetry, kinematics and dynamics of rotation, canonical variables and transformations, perturbation theory, nonlinear dynamics, KAM theory, solitons and integrable pdes.
Rules & Requirements
Prerequisites: 105 or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 205B Advanced Dynamics 4 Units
Nonlinear dynamics of dissipative systems, attractors, perturbation theory, bifurcation theory, pattern formation. Emphasis on recent developments, including turbulence.
Rules & Requirements
Prerequisites: 205A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS C207 Radiation Processes in Astronomy 4 Units
An introduction to the basic physics of astronomy and astrophysics at the graduate level. Principles of energy transfer by radiation. Elements of classical and quantum theory of photon emission; bremsstrahlung, cyclotron and synchrotron radiation. Compton scattering, atomic, molecular and nuclear electromagnetic transitions. Collisional excitation of atoms, molecules and nuclei.
Rules & Requirements
Prerequisites: PHYSICS 105, 110A; 110B concurrently; open to advanced undergraduates with GPA of 3.70
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Instructors: Bower, Chiang, Kasen, Quataert
Also listed as: ASTRON C207
PHYSICS 209 Classical Electromagnetism 5 Units
Maxwell's equations, gauge transformations and tensors. Complete development of special relativity, with applications. Plane waves in material media, polarization, Fresnel equations, attenuation, and dispersion. Wave equation with sources, retarded solution for potentials, and fields. Cartesian and spherical multipole expansions, vector spherical harmonics, examples of radiating systems, diffraction, and optical theorem. Fields of charges in arbitrary motion, radiated power, relativistic (synchrotron) radiation, and radiation in collisions.
Rules & Requirements
Prerequisites: 110A-110B or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 211 Equilibrium Statistical Physics 4 Units
Foundations of statistical physics. Ensemble theory. Degenerate systems. Systems of interacting particles.
Rules & Requirements
Prerequisites: 112 or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 212 Nonequilibrium Statistical Physics 4 Units
Time dependent processes. Kinetic equations. Transport processes. Irreversibility. Theory of many-particle systems. Critical phenomena and renormalization group. Theory of phase transitions.
Rules & Requirements
Prerequisites: 112 and 221A-221B, or equivalents
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 216 Special Topics in Many-Body Physics 4 Units
Quantum theory of many-particle systems. Applications of theory and technique to physical systems. Pairing phenomena, superfluidity, equation of state, critical phenomena, phase transitions, nuclear matter.
Rules & Requirements
Prerequisites: 221A-221B or equivalent recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 221A Quantum Mechanics 5 Units
Basic assumptions of quantum mechanics; quantum theory of measurement; matrix mechanics; Schroedinger theory; symmetry and invariance principles; theory of angular momentum; stationary state problems; variational principles; time independent perturbation theory; time dependent perturbation theory; theory of scattering.
Rules & Requirements
Prerequisites: 137A-137B or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 221B Quantum Mechanics 5 Units
Many-body methods, radiation field quantization, relativistic quantum mechanics, applications.
Rules & Requirements
Prerequisites: 221A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 226 Particle Physics Phenomenology 4 Units
Introduction to particle physics phenomena. Emphasis is placed on experimental tests of particle physics models. Topics include Quark model spectroscopy; weak decays; overview of detectors and accelerators; e+e- annihilation; parton model; electron-proton and neutrino-proton scattering; special topics of current interest.
Rules & Requirements
Prerequisites: 221A-221B or equivalent or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS C228 Extragalactic Astronomy and Cosmology 3 Units
A survey of physical cosmology - the study of the origin, evolution, and fate of the universe. Topics include the Friedmann-Robertson-Walker model, thermal history and big bang nucleosynthesis, evidence and nature of dark matter and dark energy, the formation and growth of galaxies and large scale structure, the anisotropy of the cosmic microwave radiation, inflation in the early universe, tests of cosmological models, and current research areas. The course complements the material of Astronomy 218.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Instructors: Davis, Holzapfel, Lee, Ma, Seljak, White
Also listed as: ASTRON C228
PHYSICS 229 Advanced Cosmology 3 Units
Advanced topics in physical and early-universe cosmology. Topics include the expanding Universe, evidence and nature of dark matter and dark energy, relativistic perturbation theory, models of cosmological inflation, the formation and growth of large scale structure and the anisotropy of the cosmic microwave background, and current research areas. The course extends the material of C228.
Rules & Requirements
Prerequisites: Physics/Astronomy C228 or equivalent or consent of instructor
Hours & Format
Fall and/or spring:
15 weeks - 3 hours of lecture per week
15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 231 General Relativity 4 Units
An introduction to Einstein's theory of gravitation. Tensor analysis, general relativistic models for matter and electromagnetism, Einstein's field equations. Applications, for example, to the solar system, dense stars, black holes, and cosmology.
Rules & Requirements
Prerequisites: 209 or equivalent, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 232A Quantum Field Theory I 4 Units
Introduction to quantum field theory: canonical quantization of scalar, electromagnetic, and Dirac fields; derivation of Feynman rules; regularization and renormalization; introduction to the renormalization group; elements of the path integral.
Rules & Requirements
Prerequisites: 221A-221B or equivalent or consent of instructor (concurrent enrollment in 226 is recommended)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 232B Quantum Field Theory II 4 Units
Renormalization of Yang-Mills gauge theories: BRST quantization of gauge theories; nonperturbative dynamics; renormalization group; basics of effective field theory; large N; solitons; instantons; dualities. Selected current topics.
Rules & Requirements
Prerequisites: 232A or equivalent or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 233A Standard Model and Beyond I 4 Units
Introduction to the Standard Model of particle physics and its applications: construction of the Standard Model; Higgs mechanism; phenomenology of weak interactions; QCD and the chiral Lagrangian; quark mixing and flavor physics.
Rules & Requirements
Prerequisites: 232A or equivalent or consent of instructor (concurrent enrollment in 232B is recommended)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 233B Standard Model and Beyond II 4 Units
Advanced topics in the Standard Model and beyond, selected from: open problems in the Standard Model; supersymmetric models; grand unification; neutrino physics; flat and warped extra dimensions; axions; inflation; baryogenesis; dark matter; the multiverse; other current topics.
Rules & Requirements
Prerequisites: 233A or equivalent or consent of instructor
Repeat rules: Course may be repeated for credit with consent of instructor. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 234A String Theory I 4 Units
Perturbative theory of the bosonic strings, superstrings, and heterotic strings: NSR and GS formulations; 2d CFT; strings in background fields; T-duality; effective spacetime supergravity; perturbative description of D-branes; elements of compactifications and string phenomemology; perturbative mirror symmetry.
Rules & Requirements
Prerequisites: 232A or equivalent or consent of instructor. 232B is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 234B String Theory II 4 Units
Nonperturbative apsects of string theory. Topics selected from black holes; black branes; Bekenstein-Hawking entropy; D-branes; string dualities; M-theory; holographic principle and its realizations; AdS/CFT correspondence; gauge theory/gravity dualities; flux compactifications; cosmology in string theory; topological string theories. Selected current topics.
Rules & Requirements
Prerequisites: 234A or equivalent or consent of instructor
Repeat rules: May be repeated for credit with consent of instructor. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 238 Advanced Atomic, Molecular, and Optical Physics 4 Units
Contemporary topics in atomic, molecular, and optical physics are presented at an advanced level. These topics may include one or several of the following, at the discretion of the instructor: mechanical effects of light-atom interactions, ultra-cold atomic physics, molecular physics, resonance optics of multi-level atoms, and probing particle physics with atoms and molecules.
Rules & Requirements
Prerequisites: 110A, 130, 137A-137B, and 138; or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 240A Quantum Theory of Solids 4 Units
Excitations and interactions in solids; crystal structures, symmetries, Bloch's theorem; energy bands; electron dynamics; impurity states; lattice dynamics, phonons; many-electron interactions; density functional theory; dielectric functions, conductivity and optical properties.
Rules & Requirements
Prerequisites: 141A-141B and 221A-221B or equivalents, or consent of instructor; 240A is prerequisite to 240B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 240B Quantum Theory of Solids 4 Units
Optical properties, excitons; electron-phonon interactions, polarons; quantum oscillations, Fermi surfaces; magnetoresistance; quantum Hall effect; transport processes, Boltzmann equation; superconductivity, BCS theory; many-body perturbation theory, Green's functions.
Rules & Requirements
Prerequisites: 141A-141B and 221A-221B or equivalents, or consent of instructor; 240A is prerequisite to 240B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 242A Theoretical Plasma Physics 4 Units
Analysis of plasma behavior according to the Vlasov, Fokker-Planck equations, guiding center and hydromagnetic descriptions. Study of equilibria, stability, linear and nonlinear waves, transport, and laser-plasma interactions.
Rules & Requirements
Prerequisites: PHYSICS 142, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 242B Theoretical Plasma Physics 4 Units
Analysis of plasma behavior according to the Vlasov, Fokker-Planck equations, guiding center and hydromagnetic descriptions. Study of equilibria, stability, linear and nonlinear waves, transport, and laser-plasma interactions.
Rules & Requirements
Prerequisites: PHYSICS 142, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 250 Special Topics in Physics 2 - 4 Units
Topics will vary from semester to semester. See Department of Physics announcements.
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit with consent of instructor. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
PHYSICS 251 Introduction to Graduate Research in Physics 1 Unit
A survey of experimental and theoretical research in the Department of Physics, designed for first-year graduate students. One regular meeting each week with supplementary visits to experimental laboratories. Meetings include discussions with research staff.
Rules & Requirements
Prerequisites: Graduate standing in Department of Physics or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS C254 High Energy Astrophysics 3 Units
Basic physics of high energy radiation processes in an astrophysics environment. Cosmic ray production and propagation. Applications selected from pulsars, x-ray sources, supernovae, interstellar medium, extragalactic radio sources, quasars, and big-bang cosmologies.
Rules & Requirements
Prerequisites: 201 or consent of instructor. 202 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Letter grade.
Instructors: Boggs, Quataert
Also listed as: ASTRON C254
PHYSICS C285 Theoretical Astrophysics Seminar 1 Unit
The study of theoretical astrophysics.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructor: Quataert
Also listed as: ASTRON C285
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS 290N Seminar in Non-Neutral Plasmas 2 Units
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS 290Q Seminar in Quantum Optics 2 Units
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS C290C Cosmology 2 Units
Rules & Requirements
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructors: White, Cohn
Also listed as: ASTRON C290C
PHYSICS 295 Special Study for Graduate Students 1 - 4 Units
This course is arranged to allow qualified graduate students to investigate possible research fields or to pursue problems of interest through reading or non-laboratory study under the direction of faculty members who agree to give such supervision.
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-4 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS 299 Research 1 - 12 Units
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-12 hours of independent study per week
8 weeks - 1-12 hours of independent study per week
Additional Details
Subject/Course Level: Physics/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS 301 Advanced Professional Preparation: Supervised Teaching of Physics 1 - 2 Units
Discussion, problem review and development, guidance of physics laboratory experiments, course development.
Rules & Requirements
Prerequisites: 300
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of independent study per week
Additional Details
Subject/Course Level: Physics/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
PHYSICS 375 Professional Preparation: Supervised Teaching of Physics 2 Units
Mandatory for first time GSIs. Topics include teaching theory, effective teaching methods, educational objectives, alternatives to standard classroom methods, reciprocal classroom visitations, and guided group and self-analysis of videotapes.
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor; may be taken concurrently with 301
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Physics/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Physics 300
PHYSICS 602 Individual Study for Doctoral Students 1 - 8 Units
Individual study in consultation with the major field adviser intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D.
Rules & Requirements
Prerequisites: For qualified graduate students
Credit Restrictions: Course does not satisfy unit or residence requirements for doctoral degree.
Repeat rules: Course may be repeated for credit. Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1-8 hours of independent study per week
Summer:
6 weeks - 1-8 hours of independent study per week
8 weeks - 1-8 hours of independent study per week
Additional Details
Subject/Course Level: Physics/Graduate examination preparation
Grading: Offered for satisfactory/unsatisfactory grade only.
Faculty
Professors
Mina Aganagic, Professor. Particle physics.
Research Profile
Mr. Robert Joseph Birgeneau, PhD, Professor. Physics, phase transition behavior of novel states of matter.
Research Profile
Steven Edward Boggs, Professor. Astrophysics, cosmology, supernovas, physics, gamma-ray telescopes, radioactive nuclei, nucleosynthesis, gamma-ray emission.
Research Profile
Raphael Bousso, PhD, Professor. Physics, quantum mechanics, gravity, unified description of nature, string theory, quantum properties of black holes, the geometry of spacetime, covariant entropy bound, cosmological constant.
Research Profile
Dmitry Budker, Professor. Modern atomic physics, discrete symmetries, samarium, dysprosium, ytterbium, spectral line broadening, parity nonconservation, magnetometry, atomic collisions, NV diamond, fundamental physics.
Research Profile
Carlos J. Bustamante, PhD, Professor. Nanoscience, structural characterization of nucleo-protein assemblies, single molecule fluorescence microscopy, DNA-binding molecular motors, the scanning force microscope, prokaryotes.
Research Profile
Michael F. Crommie, Professor. Physics, electronic properties of atomic-scale structures at surfaces, atomic-scale structures, morphology and dynamics of mesoscopic systems, atomic manipulation, visualizing low dimensional electronic behavior.
Research Profile
Robert C. Dynes, Professor. Condensed matter physics and materials science.
Research Profile
Joel Fajans, Professor. Astrophysics, plasma processing, physics, basic plasma physics, non-neutral plasmas, basic plasma physics experiments, pure electron plasma traps, cyrogenic plasmas, plasma bifurcations, basic non-linear dynamics, autoresonance.
Research Profile
Roger W Falcone, Professor. X-rays, plasma physics, lasers, physics, materials, atomic physics, coherent control, ultrafast.
Research Profile
Reinhard Genzel, Professor. Physics, existence and formation of black holes in galactic nuclei, the nature of the power source, the evolution of (ultra)luminous infrared galaxies, gas dynamics, the fueling of active galactic nuclei, the properties evolution of starburst galaxies.
Research Profile
Lawrence J. Hall, Professor. Physics, standard model of particle physics, symmetries of nature, the symmetry of the electroweak interaction, spacetime symmetries: weak scale supersymmetry, constrained theories for the quark and charged lepton masses, supersymmetric theory.
Research Profile
Wick Haxton, Professor. Astrophysics, neutrino physics, nuclear astrophysics, tests of symmetries and conservation laws in nuclear and particle and atomic physics, many-body theory, effective theories.
Research Profile
Beate Heinemann, PhD, Professor. Particle physics.
Research Profile
Frances Hellman, Professor. Condensed matter physics and materials science.
Research Profile
William L. Holzapfel, Professor. Cosmology, physics, measurement and interpretation of anisotropies of the cosmic microwave background, the universe, density of energy, baryonic matter in the universe, the degree angular scale interferometer, the arcminute cosmology bolometer array.
Research Profile
Petr Horava, Professor. Cosmology, physics, quantum geometry, particle physics, string (and M-) theory, quantum gravity.
Research Profile
Bob Jacobsen, Professor. Physics, high energy physics, LEP collider and detectors, CKM matrix, B meson decays, CP violation in the B system.
Research Profile
Edgar Knobloch, Dsc, Professor. Astrophysics, geophysics, physics, nonlinear dynamics of dissipative systems, bifurcation theory, low-dimensional behavior of continuous systems, the theory of nonlinear waves, pattern formation in fluid systems, reaction-diffusion systems.
Research Profile
Yury G Kolomensky, Professor. Particle physics, precision measurements, electroweak interactions, neutrino physics, QCD, BaBar, E158, CUORE, Mu2e.
Research Profile
Alessandra Lanzara, Professor. Nanostructures, physics, solid-state physics, complex novel materials, correlated electron systems, temperature superconductors, colossal magneto-resistance manganites, organic material, fullerenes, nanotubes, nanosphere, nanorods.
Research Profile
Dung-Hai Lee, Professor. Physics, theoretical condensed matter, organization principles enabling microscopic degrees of freedom to behave cooperatively, matter and their formation mechanisms, low dimensional quantum magnets, strongly correlated Fermi and Bose fluids.
Research Profile
Adrian T Lee, Professor. Physics.
Research Profile
Robert G Littlejohn, Professor. Plasma physics, nonlinear dynamics, physics, atomic, molecular, optical, and nuclear physics, dissipation in many-particle systems, semiclassical treatment of spin-orbit forces in nuclei, normal form theory for mode conversion or Landau-Zener transition.
Research Profile
Steven G. Louie, Professor. Nanoscience, nuclear magnetic resonance, semiconductors, metals, physics, fullerenes, nanotubes, condensed matter theory, surfaces, defects, nanostructure materials, clusters, many-electron effects in solids.
Research Profile
Kam-Biu Luk, Professor. Physics, particle physics, neutrinos coming from the nuclear processes in the sun, neutrino oscillation, anti-neutrinos, neutrino mixing parameters, nuclear instrumentation, data mining.
Research Profile
Joel E. Moore, Professor. Physics, nanotubes, condensed matter theory, the properties of, electron-electron interactions, zero-temperature phase transitions, interaction effects in nanoscale devices, quantum phase transitions.
Research Profile
Hitoshi Murayama, PhD, Professor. Physics, particle physics, the universe, fundamental constituents of matter, Higgs boson, anti-matter, neutrino oscillations, finite value of the cosmological constant, triple coincidence of energy densities.
Research Profile
Jeffrey B. Neaton, Professor.
Yasunori Nomura, Professor. Electroweak symmetry, developing new ideas and building realistic models in particle physics, particle physics theory and cosmology, hidden extra spatial dimensions and supersymmetry, physics of the multiverse, multiverse and quantum gravity.
Research Profile
Joseph W. Orenstein, Professor. Physics, optics, electromagnetic radiation, probe condensed matter systems, light waves, transmission and reflection coefficients, high-Tc superconductors organic molecular crystals, quasiparticles, origin of superconductivity, terahertz spectroscopy.
Research Profile
Saul Perlmutter, Professor. Cosmology, dark energy, physics, astrophysics experiments, observational astrophysics, supernovae, accelerating universe.
Research Profile
Zi Q. Qiu, PhD, Professor. Physics, novel behavior of the quantum magnetism in magnetic nanostructures, oscillatory interlayer coupling, the giant magnetoresistance, condensed matter experiment, technology applications, molecular beam epitaxy, artificial structures.
Research Profile
R. Ramesh, Professor. Processing of complex oxide heterostructures, nanoscale characterization/device structures, thin film growth and materials physics of complex oxides, materials processing for devices, information technologies.
Research Profile
Uros Seljak, Professor.
Marjorie D Shapiro, Professor. Physics, particle physics, particle experiments, probing the most basic interactions in nature, quarks, leptons, collider detector, the atlas experiment, electroweak symmetry breaking, mass, design of the silicon strip detectors, pixel detectors.
Research Profile
James L. Siegrist, Professor. High energy physics, particle experiments, large hadron collider, ATLAS, high center of mass energies, collider detectors, development of instrumentation and software, dark matter direct detection, non-proliferation, physical sciences and oncology.
Research Profile
Dan M. Stamper-Kurn, Professor. Atomic physics, the use of ultra-cold neutral atoms, studies of microscopic and macroscopic quantum phenomena, cavity quantum electrodynamics, Bose-Einstein condensation, precision and quantum measurement.
Research Profile
Mr. Ashvin Vishwanath, PhD, Professor. Theoretical physics, physics, condensed matter theory, quantum condensed matter, systems of many quantum particles, dilute atomic gases, optical lattices, strongly correlated materials, fractionalization, unconventional quantum phase transition.
Research Profile
Martin White, PhD, Professor. Cosmology, formation of structure in the universe, dark energy, expansion of the universe, cosmic microwave background, quasars, redshift surveys.
Research Profile
Jonathan Wurtele, Professor. Physics, stability, plasma theory, advanced accelerator concepts, intense laser-plasma interaction, the basic equilibrium, radiation properties of intense charged particle beams, simulation and the development of proof-of-principle experiments.
Research Profile
Alex Zettl, Professor. Physics, condensed matter physics, fullerenes, condensed matter experiments, characterize novel materials with unusual electronic and magnetic ground states, low-dimensional and nanoscale structures, superconductors, giant magnetoresistance materials.
Research Profile
Associate Professors
Ori J. Ganor, Associate Professor. Physics, string theory, -theory, F-theory, matrix-models, noncommutative geometry, six-dimensional theories and their large N limit, supersymmetric field theories, coupled quantum systems, nonperturbative and strong-coupling, nonlocal behavior, space.
Research Profile
Jan T. Liphardt, Associate Professor.
Irfan Siddiqi, PhD, Associate Professor. Condensed matter physics, superconducting qubits, quantum limited amplifiers, quantum circuits.
Research Profile
Assistant Professors
Michael Robert Deweese, PhD, Assistant Professor. Machine learning, computation, systems neuroscience, auditory cortex, neural coding.
Research Profile
Hartmut Haeffner, PhD, Assistant Professor. Precision measurements, quantum information and computation, ion traps, quantum state engineering, decoherence, quantum simulations, quantum energy transport, quantum chaos, cryogenic electronics.
Research Profile
Oskar Hallatschek, PhD, Assistant Professor.
Gabriel Orebi Gann, Ba Dphil Ma MSC, Assistant Professor.
Surjeet Rajendran, Assistant Professor.
Ahmet Yildiz, PhD, Assistant Professor.
Contact Information
Equity Advisor and Campus Liason
Ori Ganor
366 LeConte Hall
Supervisor, Physics Student Services
Anne Takizawa
372 LeConte Hall
Phone: 510-642-7524